This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the distance function of a metric space. (Contributed by NM, 30-Aug-2006) (Revised by Mario Carneiro, 20-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mettri2 | |- ( ( D e. ( Met ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A D B ) <_ ( ( C D A ) + ( C D B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metxmet | |- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 2 | xmettri2 | |- ( ( D e. ( *Met ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A D B ) <_ ( ( C D A ) +e ( C D B ) ) ) |
|
| 3 | 1 2 | sylan | |- ( ( D e. ( Met ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A D B ) <_ ( ( C D A ) +e ( C D B ) ) ) |
| 4 | metcl | |- ( ( D e. ( Met ` X ) /\ C e. X /\ A e. X ) -> ( C D A ) e. RR ) |
|
| 5 | 4 | 3adant3r3 | |- ( ( D e. ( Met ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( C D A ) e. RR ) |
| 6 | metcl | |- ( ( D e. ( Met ` X ) /\ C e. X /\ B e. X ) -> ( C D B ) e. RR ) |
|
| 7 | 6 | 3adant3r2 | |- ( ( D e. ( Met ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( C D B ) e. RR ) |
| 8 | 5 7 | rexaddd | |- ( ( D e. ( Met ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( ( C D A ) +e ( C D B ) ) = ( ( C D A ) + ( C D B ) ) ) |
| 9 | 3 8 | breqtrd | |- ( ( D e. ( Met ` X ) /\ ( C e. X /\ A e. X /\ B e. X ) ) -> ( A D B ) <_ ( ( C D A ) + ( C D B ) ) ) |