This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted quantifier version of 19.23v . Version of r19.23 with a disjoint variable condition. (Contributed by NM, 31-Aug-1999) Reduce dependencies on axioms. (Revised by Wolf Lammen, 14-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | r19.23v | |- ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | con34b | |- ( ( ph -> ps ) <-> ( -. ps -> -. ph ) ) |
|
| 2 | 1 | ralbii | |- ( A. x e. A ( ph -> ps ) <-> A. x e. A ( -. ps -> -. ph ) ) |
| 3 | r19.21v | |- ( A. x e. A ( -. ps -> -. ph ) <-> ( -. ps -> A. x e. A -. ph ) ) |
|
| 4 | dfrex2 | |- ( E. x e. A ph <-> -. A. x e. A -. ph ) |
|
| 5 | 4 | imbi1i | |- ( ( E. x e. A ph -> ps ) <-> ( -. A. x e. A -. ph -> ps ) ) |
| 6 | con1b | |- ( ( -. A. x e. A -. ph -> ps ) <-> ( -. ps -> A. x e. A -. ph ) ) |
|
| 7 | 5 6 | bitr2i | |- ( ( -. ps -> A. x e. A -. ph ) <-> ( E. x e. A ph -> ps ) ) |
| 8 | 2 3 7 | 3bitri | |- ( A. x e. A ( ph -> ps ) <-> ( E. x e. A ph -> ps ) ) |