This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Commutation of restricted and unrestricted universal quantifiers. (Contributed by NM, 26-Mar-2004) (Proof shortened by Andrew Salmon, 8-Jun-2011) Reduce axiom dependencies. (Revised by BJ, 13-Jun-2019) (Proof shortened by Wolf Lammen, 31-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ralcom4 | |- ( A. x e. A A. y ph <-> A. y A. x e. A ph ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 19.21v | |- ( A. y ( x e. A -> ph ) <-> ( x e. A -> A. y ph ) ) |
|
| 2 | 1 | albii | |- ( A. x A. y ( x e. A -> ph ) <-> A. x ( x e. A -> A. y ph ) ) |
| 3 | alcom | |- ( A. y A. x ( x e. A -> ph ) <-> A. x A. y ( x e. A -> ph ) ) |
|
| 4 | df-ral | |- ( A. x e. A A. y ph <-> A. x ( x e. A -> A. y ph ) ) |
|
| 5 | 2 3 4 | 3bitr4ri | |- ( A. x e. A A. y ph <-> A. y A. x ( x e. A -> ph ) ) |
| 6 | df-ral | |- ( A. x e. A ph <-> A. x ( x e. A -> ph ) ) |
|
| 7 | 6 | albii | |- ( A. y A. x e. A ph <-> A. y A. x ( x e. A -> ph ) ) |
| 8 | 5 7 | bitr4i | |- ( A. x e. A A. y ph <-> A. y A. x e. A ph ) |