This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express the binary relation "sequence F converges to point P " in a metric space using an arbitrary upper set of integers. This version of lmmbr2 presupposes that F is a function. (Contributed by NM, 20-Jul-2007) (Revised by Mario Carneiro, 1-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmmbr.2 | |- J = ( MetOpen ` D ) |
|
| lmmbr.3 | |- ( ph -> D e. ( *Met ` X ) ) |
||
| lmmbr3.5 | |- Z = ( ZZ>= ` M ) |
||
| lmmbr3.6 | |- ( ph -> M e. ZZ ) |
||
| lmmbrf.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
||
| lmmbrf.8 | |- ( ph -> F : Z --> X ) |
||
| Assertion | lmmbrf | |- ( ph -> ( F ( ~~>t ` J ) P <-> ( P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( A D P ) < x ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmmbr.2 | |- J = ( MetOpen ` D ) |
|
| 2 | lmmbr.3 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 3 | lmmbr3.5 | |- Z = ( ZZ>= ` M ) |
|
| 4 | lmmbr3.6 | |- ( ph -> M e. ZZ ) |
|
| 5 | lmmbrf.7 | |- ( ( ph /\ k e. Z ) -> ( F ` k ) = A ) |
|
| 6 | lmmbrf.8 | |- ( ph -> F : Z --> X ) |
|
| 7 | elfvdm | |- ( D e. ( *Met ` X ) -> X e. dom *Met ) |
|
| 8 | cnex | |- CC e. _V |
|
| 9 | 7 8 | jctir | |- ( D e. ( *Met ` X ) -> ( X e. dom *Met /\ CC e. _V ) ) |
| 10 | uzssz | |- ( ZZ>= ` M ) C_ ZZ |
|
| 11 | zsscn | |- ZZ C_ CC |
|
| 12 | 10 11 | sstri | |- ( ZZ>= ` M ) C_ CC |
| 13 | 3 12 | eqsstri | |- Z C_ CC |
| 14 | 13 | jctr | |- ( F : Z --> X -> ( F : Z --> X /\ Z C_ CC ) ) |
| 15 | elpm2r | |- ( ( ( X e. dom *Met /\ CC e. _V ) /\ ( F : Z --> X /\ Z C_ CC ) ) -> F e. ( X ^pm CC ) ) |
|
| 16 | 9 14 15 | syl2an | |- ( ( D e. ( *Met ` X ) /\ F : Z --> X ) -> F e. ( X ^pm CC ) ) |
| 17 | 2 6 16 | syl2anc | |- ( ph -> F e. ( X ^pm CC ) ) |
| 18 | 17 | biantrurd | |- ( ph -> ( ( P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) <-> ( F e. ( X ^pm CC ) /\ ( P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) ) ) |
| 19 | 3 | uztrn2 | |- ( ( j e. Z /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 20 | 19 | adantll | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> k e. Z ) |
| 21 | 5 | oveq1d | |- ( ( ph /\ k e. Z ) -> ( ( F ` k ) D P ) = ( A D P ) ) |
| 22 | 21 | breq1d | |- ( ( ph /\ k e. Z ) -> ( ( ( F ` k ) D P ) < x <-> ( A D P ) < x ) ) |
| 23 | 22 | adantrl | |- ( ( ph /\ ( j e. Z /\ k e. Z ) ) -> ( ( ( F ` k ) D P ) < x <-> ( A D P ) < x ) ) |
| 24 | 6 | fdmd | |- ( ph -> dom F = Z ) |
| 25 | 24 | eleq2d | |- ( ph -> ( k e. dom F <-> k e. Z ) ) |
| 26 | 25 | biimpar | |- ( ( ph /\ k e. Z ) -> k e. dom F ) |
| 27 | 6 | ffvelcdmda | |- ( ( ph /\ k e. Z ) -> ( F ` k ) e. X ) |
| 28 | 26 27 | jca | |- ( ( ph /\ k e. Z ) -> ( k e. dom F /\ ( F ` k ) e. X ) ) |
| 29 | 28 | biantrurd | |- ( ( ph /\ k e. Z ) -> ( ( ( F ` k ) D P ) < x <-> ( ( k e. dom F /\ ( F ` k ) e. X ) /\ ( ( F ` k ) D P ) < x ) ) ) |
| 30 | df-3an | |- ( ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) <-> ( ( k e. dom F /\ ( F ` k ) e. X ) /\ ( ( F ` k ) D P ) < x ) ) |
|
| 31 | 29 30 | bitr4di | |- ( ( ph /\ k e. Z ) -> ( ( ( F ` k ) D P ) < x <-> ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
| 32 | 31 | adantrl | |- ( ( ph /\ ( j e. Z /\ k e. Z ) ) -> ( ( ( F ` k ) D P ) < x <-> ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
| 33 | 23 32 | bitr3d | |- ( ( ph /\ ( j e. Z /\ k e. Z ) ) -> ( ( A D P ) < x <-> ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
| 34 | 33 | anassrs | |- ( ( ( ph /\ j e. Z ) /\ k e. Z ) -> ( ( A D P ) < x <-> ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
| 35 | 20 34 | syldan | |- ( ( ( ph /\ j e. Z ) /\ k e. ( ZZ>= ` j ) ) -> ( ( A D P ) < x <-> ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
| 36 | 35 | ralbidva | |- ( ( ph /\ j e. Z ) -> ( A. k e. ( ZZ>= ` j ) ( A D P ) < x <-> A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
| 37 | 36 | rexbidva | |- ( ph -> ( E. j e. Z A. k e. ( ZZ>= ` j ) ( A D P ) < x <-> E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
| 38 | 37 | ralbidv | |- ( ph -> ( A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( A D P ) < x <-> A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) |
| 39 | 38 | anbi2d | |- ( ph -> ( ( P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( A D P ) < x ) <-> ( P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) ) |
| 40 | 1 2 3 4 | lmmbr3 | |- ( ph -> ( F ( ~~>t ` J ) P <-> ( F e. ( X ^pm CC ) /\ P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) ) |
| 41 | 3anass | |- ( ( F e. ( X ^pm CC ) /\ P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) <-> ( F e. ( X ^pm CC ) /\ ( P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) ) |
|
| 42 | 40 41 | bitrdi | |- ( ph -> ( F ( ~~>t ` J ) P <-> ( F e. ( X ^pm CC ) /\ ( P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( k e. dom F /\ ( F ` k ) e. X /\ ( ( F ` k ) D P ) < x ) ) ) ) ) |
| 43 | 18 39 42 | 3bitr4rd | |- ( ph -> ( F ( ~~>t ` J ) P <-> ( P e. X /\ A. x e. RR+ E. j e. Z A. k e. ( ZZ>= ` j ) ( A D P ) < x ) ) ) |