This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The upper integers are all nonempty. (Contributed by Mario Carneiro, 16-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | uzn0 | |- ( M e. ran ZZ>= -> M =/= (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 2 | ffn | |- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
|
| 3 | fvelrnb | |- ( ZZ>= Fn ZZ -> ( M e. ran ZZ>= <-> E. k e. ZZ ( ZZ>= ` k ) = M ) ) |
|
| 4 | 1 2 3 | mp2b | |- ( M e. ran ZZ>= <-> E. k e. ZZ ( ZZ>= ` k ) = M ) |
| 5 | uzid | |- ( k e. ZZ -> k e. ( ZZ>= ` k ) ) |
|
| 6 | 5 | ne0d | |- ( k e. ZZ -> ( ZZ>= ` k ) =/= (/) ) |
| 7 | neeq1 | |- ( ( ZZ>= ` k ) = M -> ( ( ZZ>= ` k ) =/= (/) <-> M =/= (/) ) ) |
|
| 8 | 6 7 | syl5ibcom | |- ( k e. ZZ -> ( ( ZZ>= ` k ) = M -> M =/= (/) ) ) |
| 9 | 8 | rexlimiv | |- ( E. k e. ZZ ( ZZ>= ` k ) = M -> M =/= (/) ) |
| 10 | 4 9 | sylbi | |- ( M e. ran ZZ>= -> M =/= (/) ) |