This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010) Avoid ax-pow . (Revised by BTernaryTau, 26-Aug-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | findcard2.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| findcard2.2 | |- ( x = y -> ( ph <-> ch ) ) |
||
| findcard2.3 | |- ( x = ( y u. { z } ) -> ( ph <-> th ) ) |
||
| findcard2.4 | |- ( x = A -> ( ph <-> ta ) ) |
||
| findcard2.5 | |- ps |
||
| findcard2.6 | |- ( y e. Fin -> ( ch -> th ) ) |
||
| Assertion | findcard2 | |- ( A e. Fin -> ta ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | findcard2.1 | |- ( x = (/) -> ( ph <-> ps ) ) |
|
| 2 | findcard2.2 | |- ( x = y -> ( ph <-> ch ) ) |
|
| 3 | findcard2.3 | |- ( x = ( y u. { z } ) -> ( ph <-> th ) ) |
|
| 4 | findcard2.4 | |- ( x = A -> ( ph <-> ta ) ) |
|
| 5 | findcard2.5 | |- ps |
|
| 6 | findcard2.6 | |- ( y e. Fin -> ( ch -> th ) ) |
|
| 7 | isfi | |- ( x e. Fin <-> E. w e. _om x ~~ w ) |
|
| 8 | breq2 | |- ( w = (/) -> ( x ~~ w <-> x ~~ (/) ) ) |
|
| 9 | 8 | imbi1d | |- ( w = (/) -> ( ( x ~~ w -> ph ) <-> ( x ~~ (/) -> ph ) ) ) |
| 10 | 9 | albidv | |- ( w = (/) -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ (/) -> ph ) ) ) |
| 11 | breq2 | |- ( w = v -> ( x ~~ w <-> x ~~ v ) ) |
|
| 12 | 11 | imbi1d | |- ( w = v -> ( ( x ~~ w -> ph ) <-> ( x ~~ v -> ph ) ) ) |
| 13 | 12 | albidv | |- ( w = v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ v -> ph ) ) ) |
| 14 | breq2 | |- ( w = suc v -> ( x ~~ w <-> x ~~ suc v ) ) |
|
| 15 | 14 | imbi1d | |- ( w = suc v -> ( ( x ~~ w -> ph ) <-> ( x ~~ suc v -> ph ) ) ) |
| 16 | 15 | albidv | |- ( w = suc v -> ( A. x ( x ~~ w -> ph ) <-> A. x ( x ~~ suc v -> ph ) ) ) |
| 17 | en0 | |- ( x ~~ (/) <-> x = (/) ) |
|
| 18 | 5 1 | mpbiri | |- ( x = (/) -> ph ) |
| 19 | 17 18 | sylbi | |- ( x ~~ (/) -> ph ) |
| 20 | 19 | ax-gen | |- A. x ( x ~~ (/) -> ph ) |
| 21 | nnon | |- ( v e. _om -> v e. On ) |
|
| 22 | rexdif1en | |- ( ( v e. On /\ w ~~ suc v ) -> E. z e. w ( w \ { z } ) ~~ v ) |
|
| 23 | 21 22 | sylan | |- ( ( v e. _om /\ w ~~ suc v ) -> E. z e. w ( w \ { z } ) ~~ v ) |
| 24 | snssi | |- ( z e. w -> { z } C_ w ) |
|
| 25 | uncom | |- ( ( w \ { z } ) u. { z } ) = ( { z } u. ( w \ { z } ) ) |
|
| 26 | undif | |- ( { z } C_ w <-> ( { z } u. ( w \ { z } ) ) = w ) |
|
| 27 | 26 | biimpi | |- ( { z } C_ w -> ( { z } u. ( w \ { z } ) ) = w ) |
| 28 | 25 27 | eqtrid | |- ( { z } C_ w -> ( ( w \ { z } ) u. { z } ) = w ) |
| 29 | vex | |- w e. _V |
|
| 30 | 29 | difexi | |- ( w \ { z } ) e. _V |
| 31 | breq1 | |- ( y = ( w \ { z } ) -> ( y ~~ v <-> ( w \ { z } ) ~~ v ) ) |
|
| 32 | 31 | anbi2d | |- ( y = ( w \ { z } ) -> ( ( v e. _om /\ y ~~ v ) <-> ( v e. _om /\ ( w \ { z } ) ~~ v ) ) ) |
| 33 | uneq1 | |- ( y = ( w \ { z } ) -> ( y u. { z } ) = ( ( w \ { z } ) u. { z } ) ) |
|
| 34 | 33 | sbceq1d | |- ( y = ( w \ { z } ) -> ( [. ( y u. { z } ) / x ]. ph <-> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) |
| 35 | 34 | imbi2d | |- ( y = ( w \ { z } ) -> ( ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) <-> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) ) |
| 36 | 32 35 | imbi12d | |- ( y = ( w \ { z } ) -> ( ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) ) <-> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) ) ) |
| 37 | breq1 | |- ( x = y -> ( x ~~ v <-> y ~~ v ) ) |
|
| 38 | 37 2 | imbi12d | |- ( x = y -> ( ( x ~~ v -> ph ) <-> ( y ~~ v -> ch ) ) ) |
| 39 | 38 | spvv | |- ( A. x ( x ~~ v -> ph ) -> ( y ~~ v -> ch ) ) |
| 40 | rspe | |- ( ( v e. _om /\ y ~~ v ) -> E. v e. _om y ~~ v ) |
|
| 41 | isfi | |- ( y e. Fin <-> E. v e. _om y ~~ v ) |
|
| 42 | 40 41 | sylibr | |- ( ( v e. _om /\ y ~~ v ) -> y e. Fin ) |
| 43 | pm2.27 | |- ( y ~~ v -> ( ( y ~~ v -> ch ) -> ch ) ) |
|
| 44 | 43 | adantl | |- ( ( v e. _om /\ y ~~ v ) -> ( ( y ~~ v -> ch ) -> ch ) ) |
| 45 | 42 44 6 | sylsyld | |- ( ( v e. _om /\ y ~~ v ) -> ( ( y ~~ v -> ch ) -> th ) ) |
| 46 | 39 45 | syl5 | |- ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> th ) ) |
| 47 | vex | |- y e. _V |
|
| 48 | vsnex | |- { z } e. _V |
|
| 49 | 47 48 | unex | |- ( y u. { z } ) e. _V |
| 50 | 49 3 | sbcie | |- ( [. ( y u. { z } ) / x ]. ph <-> th ) |
| 51 | 46 50 | imbitrrdi | |- ( ( v e. _om /\ y ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( y u. { z } ) / x ]. ph ) ) |
| 52 | 30 36 51 | vtocl | |- ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) ) |
| 53 | dfsbcq | |- ( ( ( w \ { z } ) u. { z } ) = w -> ( [. ( ( w \ { z } ) u. { z } ) / x ]. ph <-> [. w / x ]. ph ) ) |
|
| 54 | 53 | imbi2d | |- ( ( ( w \ { z } ) u. { z } ) = w -> ( ( A. x ( x ~~ v -> ph ) -> [. ( ( w \ { z } ) u. { z } ) / x ]. ph ) <-> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 55 | 52 54 | imbitrid | |- ( ( ( w \ { z } ) u. { z } ) = w -> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 56 | 24 28 55 | 3syl | |- ( z e. w -> ( ( v e. _om /\ ( w \ { z } ) ~~ v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 57 | 56 | expd | |- ( z e. w -> ( v e. _om -> ( ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
| 58 | 57 | com12 | |- ( v e. _om -> ( z e. w -> ( ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) ) |
| 59 | 58 | rexlimdv | |- ( v e. _om -> ( E. z e. w ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 60 | 59 | adantr | |- ( ( v e. _om /\ w ~~ suc v ) -> ( E. z e. w ( w \ { z } ) ~~ v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 61 | 23 60 | mpd | |- ( ( v e. _om /\ w ~~ suc v ) -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) |
| 62 | 61 | ex | |- ( v e. _om -> ( w ~~ suc v -> ( A. x ( x ~~ v -> ph ) -> [. w / x ]. ph ) ) ) |
| 63 | 62 | com23 | |- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
| 64 | 63 | alrimdv | |- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. w ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
| 65 | nfv | |- F/ w ( x ~~ suc v -> ph ) |
|
| 66 | nfv | |- F/ x w ~~ suc v |
|
| 67 | nfsbc1v | |- F/ x [. w / x ]. ph |
|
| 68 | 66 67 | nfim | |- F/ x ( w ~~ suc v -> [. w / x ]. ph ) |
| 69 | breq1 | |- ( x = w -> ( x ~~ suc v <-> w ~~ suc v ) ) |
|
| 70 | sbceq1a | |- ( x = w -> ( ph <-> [. w / x ]. ph ) ) |
|
| 71 | 69 70 | imbi12d | |- ( x = w -> ( ( x ~~ suc v -> ph ) <-> ( w ~~ suc v -> [. w / x ]. ph ) ) ) |
| 72 | 65 68 71 | cbvalv1 | |- ( A. x ( x ~~ suc v -> ph ) <-> A. w ( w ~~ suc v -> [. w / x ]. ph ) ) |
| 73 | 64 72 | imbitrrdi | |- ( v e. _om -> ( A. x ( x ~~ v -> ph ) -> A. x ( x ~~ suc v -> ph ) ) ) |
| 74 | 10 13 16 20 73 | finds1 | |- ( w e. _om -> A. x ( x ~~ w -> ph ) ) |
| 75 | 74 | 19.21bi | |- ( w e. _om -> ( x ~~ w -> ph ) ) |
| 76 | 75 | rexlimiv | |- ( E. w e. _om x ~~ w -> ph ) |
| 77 | 7 76 | sylbi | |- ( x e. Fin -> ph ) |
| 78 | 4 77 | vtoclga | |- ( A e. Fin -> ta ) |