This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality theorem for restricted universal quantifier. (Contributed by NM, 16-Nov-1995) Remove usage of ax-10 , ax-11 , and ax-12 . (Revised by Steven Nguyen, 30-Apr-2023) Shorten other proofs. (Revised by Wolf Lammen, 8-Mar-2025)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | raleq | |- ( A = B -> ( A. x e. A ph <-> A. x e. B ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexeq | |- ( A = B -> ( E. x e. A -. ph <-> E. x e. B -. ph ) ) |
|
| 2 | rexnal | |- ( E. x e. A -. ph <-> -. A. x e. A ph ) |
|
| 3 | rexnal | |- ( E. x e. B -. ph <-> -. A. x e. B ph ) |
|
| 4 | 1 2 3 | 3bitr3g | |- ( A = B -> ( -. A. x e. A ph <-> -. A. x e. B ph ) ) |
| 5 | 4 | con4bid | |- ( A = B -> ( A. x e. A ph <-> A. x e. B ph ) ) |