This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The closure of a subset of a topology's underlying set is closed. (Contributed by NM, 4-Oct-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | clscld | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | 1 | clsval | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) = |^| { x e. ( Clsd ` J ) | S C_ x } ) |
| 3 | 1 | topcld | |- ( J e. Top -> X e. ( Clsd ` J ) ) |
| 4 | 3 | anim1i | |- ( ( J e. Top /\ S C_ X ) -> ( X e. ( Clsd ` J ) /\ S C_ X ) ) |
| 5 | sseq2 | |- ( x = X -> ( S C_ x <-> S C_ X ) ) |
|
| 6 | 5 | elrab | |- ( X e. { x e. ( Clsd ` J ) | S C_ x } <-> ( X e. ( Clsd ` J ) /\ S C_ X ) ) |
| 7 | 4 6 | sylibr | |- ( ( J e. Top /\ S C_ X ) -> X e. { x e. ( Clsd ` J ) | S C_ x } ) |
| 8 | 7 | ne0d | |- ( ( J e. Top /\ S C_ X ) -> { x e. ( Clsd ` J ) | S C_ x } =/= (/) ) |
| 9 | ssrab2 | |- { x e. ( Clsd ` J ) | S C_ x } C_ ( Clsd ` J ) |
|
| 10 | intcld | |- ( ( { x e. ( Clsd ` J ) | S C_ x } =/= (/) /\ { x e. ( Clsd ` J ) | S C_ x } C_ ( Clsd ` J ) ) -> |^| { x e. ( Clsd ` J ) | S C_ x } e. ( Clsd ` J ) ) |
|
| 11 | 8 9 10 | sylancl | |- ( ( J e. Top /\ S C_ X ) -> |^| { x e. ( Clsd ` J ) | S C_ x } e. ( Clsd ` J ) ) |
| 12 | 2 11 | eqeltrd | |- ( ( J e. Top /\ S C_ X ) -> ( ( cls ` J ) ` S ) e. ( Clsd ` J ) ) |