This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specific properties of an element of ( fiB ) . (Contributed by FL, 27-Apr-2008) (Revised by Mario Carneiro, 24-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elfi | |- ( ( A e. V /\ B e. W ) -> ( A e. ( fi ` B ) <-> E. x e. ( ~P B i^i Fin ) A = |^| x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fival | |- ( B e. W -> ( fi ` B ) = { y | E. x e. ( ~P B i^i Fin ) y = |^| x } ) |
|
| 2 | 1 | eleq2d | |- ( B e. W -> ( A e. ( fi ` B ) <-> A e. { y | E. x e. ( ~P B i^i Fin ) y = |^| x } ) ) |
| 3 | eqeq1 | |- ( y = A -> ( y = |^| x <-> A = |^| x ) ) |
|
| 4 | 3 | rexbidv | |- ( y = A -> ( E. x e. ( ~P B i^i Fin ) y = |^| x <-> E. x e. ( ~P B i^i Fin ) A = |^| x ) ) |
| 5 | 4 | elabg | |- ( A e. V -> ( A e. { y | E. x e. ( ~P B i^i Fin ) y = |^| x } <-> E. x e. ( ~P B i^i Fin ) A = |^| x ) ) |
| 6 | 2 5 | sylan9bbr | |- ( ( A e. V /\ B e. W ) -> ( A e. ( fi ` B ) <-> E. x e. ( ~P B i^i Fin ) A = |^| x ) ) |