This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any finite ordered set has an order isomorphism to a one-based finite sequence. (Contributed by Mario Carneiro, 2-Apr-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fz1iso | |- ( ( R Or A /\ A e. Fin ) -> E. f f Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) = ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) |
|
| 2 | eqid | |- ( NN i^i ( `' < " { ( ( # ` A ) + 1 ) } ) ) = ( NN i^i ( `' < " { ( ( # ` A ) + 1 ) } ) ) |
|
| 3 | eqid | |- ( _om i^i ( `' ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) ` ( ( # ` A ) + 1 ) ) ) = ( _om i^i ( `' ( rec ( ( n e. _V |-> ( n + 1 ) ) , 1 ) |` _om ) ` ( ( # ` A ) + 1 ) ) ) |
|
| 4 | eqid | |- OrdIso ( R , A ) = OrdIso ( R , A ) |
|
| 5 | 1 2 3 4 | fz1isolem | |- ( ( R Or A /\ A e. Fin ) -> E. f f Isom < , R ( ( 1 ... ( # ` A ) ) , A ) ) |