This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Composition with the empty set. (Contributed by NM, 24-Apr-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | co01 | |- ( (/) o. A ) = (/) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnv0 | |- `' (/) = (/) |
|
| 2 | cnvco | |- `' ( (/) o. A ) = ( `' A o. `' (/) ) |
|
| 3 | 1 | coeq2i | |- ( `' A o. `' (/) ) = ( `' A o. (/) ) |
| 4 | co02 | |- ( `' A o. (/) ) = (/) |
|
| 5 | 2 3 4 | 3eqtri | |- `' ( (/) o. A ) = (/) |
| 6 | 1 5 | eqtr4i | |- `' (/) = `' ( (/) o. A ) |
| 7 | 6 | cnveqi | |- `' `' (/) = `' `' ( (/) o. A ) |
| 8 | rel0 | |- Rel (/) |
|
| 9 | dfrel2 | |- ( Rel (/) <-> `' `' (/) = (/) ) |
|
| 10 | 8 9 | mpbi | |- `' `' (/) = (/) |
| 11 | relco | |- Rel ( (/) o. A ) |
|
| 12 | dfrel2 | |- ( Rel ( (/) o. A ) <-> `' `' ( (/) o. A ) = ( (/) o. A ) ) |
|
| 13 | 11 12 | mpbi | |- `' `' ( (/) o. A ) = ( (/) o. A ) |
| 14 | 7 10 13 | 3eqtr3ri | |- ( (/) o. A ) = (/) |