This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for gsumval3 . (Contributed by AV, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsumval3.b | |- B = ( Base ` G ) |
|
| gsumval3.0 | |- .0. = ( 0g ` G ) |
||
| gsumval3.p | |- .+ = ( +g ` G ) |
||
| gsumval3.z | |- Z = ( Cntz ` G ) |
||
| gsumval3.g | |- ( ph -> G e. Mnd ) |
||
| gsumval3.a | |- ( ph -> A e. V ) |
||
| gsumval3.f | |- ( ph -> F : A --> B ) |
||
| gsumval3.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
||
| gsumval3.m | |- ( ph -> M e. NN ) |
||
| gsumval3.h | |- ( ph -> H : ( 1 ... M ) -1-1-> A ) |
||
| gsumval3.n | |- ( ph -> ( F supp .0. ) C_ ran H ) |
||
| gsumval3.w | |- W = ( ( F o. H ) supp .0. ) |
||
| Assertion | gsumval3lem2 | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumval3.b | |- B = ( Base ` G ) |
|
| 2 | gsumval3.0 | |- .0. = ( 0g ` G ) |
|
| 3 | gsumval3.p | |- .+ = ( +g ` G ) |
|
| 4 | gsumval3.z | |- Z = ( Cntz ` G ) |
|
| 5 | gsumval3.g | |- ( ph -> G e. Mnd ) |
|
| 6 | gsumval3.a | |- ( ph -> A e. V ) |
|
| 7 | gsumval3.f | |- ( ph -> F : A --> B ) |
|
| 8 | gsumval3.c | |- ( ph -> ran F C_ ( Z ` ran F ) ) |
|
| 9 | gsumval3.m | |- ( ph -> M e. NN ) |
|
| 10 | gsumval3.h | |- ( ph -> H : ( 1 ... M ) -1-1-> A ) |
|
| 11 | gsumval3.n | |- ( ph -> ( F supp .0. ) C_ ran H ) |
|
| 12 | gsumval3.w | |- W = ( ( F o. H ) supp .0. ) |
|
| 13 | f1f | |- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) --> A ) |
|
| 14 | 10 13 | syl | |- ( ph -> H : ( 1 ... M ) --> A ) |
| 15 | fzfid | |- ( ph -> ( 1 ... M ) e. Fin ) |
|
| 16 | 14 15 | fexd | |- ( ph -> H e. _V ) |
| 17 | vex | |- f e. _V |
|
| 18 | coexg | |- ( ( H e. _V /\ f e. _V ) -> ( H o. f ) e. _V ) |
|
| 19 | 16 17 18 | sylancl | |- ( ph -> ( H o. f ) e. _V ) |
| 20 | 19 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) e. _V ) |
| 21 | 1 2 3 4 5 6 7 8 9 10 11 12 | gsumval3lem1 | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) |
| 22 | fzfi | |- ( 1 ... M ) e. Fin |
|
| 23 | suppssdm | |- ( ( F o. H ) supp .0. ) C_ dom ( F o. H ) |
|
| 24 | 12 23 | eqsstri | |- W C_ dom ( F o. H ) |
| 25 | 7 14 | fcod | |- ( ph -> ( F o. H ) : ( 1 ... M ) --> B ) |
| 26 | 24 25 | fssdm | |- ( ph -> W C_ ( 1 ... M ) ) |
| 27 | ssfi | |- ( ( ( 1 ... M ) e. Fin /\ W C_ ( 1 ... M ) ) -> W e. Fin ) |
|
| 28 | 22 26 27 | sylancr | |- ( ph -> W e. Fin ) |
| 29 | 28 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W e. Fin ) |
| 30 | 10 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> H : ( 1 ... M ) -1-1-> A ) |
| 31 | 26 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> W C_ ( 1 ... M ) ) |
| 32 | f1ores | |- ( ( H : ( 1 ... M ) -1-1-> A /\ W C_ ( 1 ... M ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) |
|
| 33 | 30 31 32 | syl2anc | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( H " W ) ) |
| 34 | 12 | imaeq2i | |- ( H " W ) = ( H " ( ( F o. H ) supp .0. ) ) |
| 35 | 7 6 | fexd | |- ( ph -> F e. _V ) |
| 36 | ovex | |- ( 1 ... M ) e. _V |
|
| 37 | fex | |- ( ( H : ( 1 ... M ) --> A /\ ( 1 ... M ) e. _V ) -> H e. _V ) |
|
| 38 | 14 36 37 | sylancl | |- ( ph -> H e. _V ) |
| 39 | 35 38 | jca | |- ( ph -> ( F e. _V /\ H e. _V ) ) |
| 40 | f1fun | |- ( H : ( 1 ... M ) -1-1-> A -> Fun H ) |
|
| 41 | 10 40 | syl | |- ( ph -> Fun H ) |
| 42 | 41 11 | jca | |- ( ph -> ( Fun H /\ ( F supp .0. ) C_ ran H ) ) |
| 43 | imacosupp | |- ( ( F e. _V /\ H e. _V ) -> ( ( Fun H /\ ( F supp .0. ) C_ ran H ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) ) |
|
| 44 | 39 42 43 | sylc | |- ( ph -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) |
| 45 | 44 | adantr | |- ( ( ph /\ W =/= (/) ) -> ( H " ( ( F o. H ) supp .0. ) ) = ( F supp .0. ) ) |
| 46 | 34 45 | eqtrid | |- ( ( ph /\ W =/= (/) ) -> ( H " W ) = ( F supp .0. ) ) |
| 47 | 46 | adantr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H " W ) = ( F supp .0. ) ) |
| 48 | 47 | f1oeq3d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H |` W ) : W -1-1-onto-> ( H " W ) <-> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) ) |
| 49 | 33 48 | mpbid | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( H |` W ) : W -1-1-onto-> ( F supp .0. ) ) |
| 50 | 29 49 | hasheqf1od | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( # ` W ) = ( # ` ( F supp .0. ) ) ) |
| 51 | 50 | fveq2d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 52 | 21 51 | jca | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
| 53 | f1oeq1 | |- ( g = ( H o. f ) -> ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) <-> ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) ) ) |
|
| 54 | coeq2 | |- ( g = ( H o. f ) -> ( F o. g ) = ( F o. ( H o. f ) ) ) |
|
| 55 | 54 | seqeq3d | |- ( g = ( H o. f ) -> seq 1 ( .+ , ( F o. g ) ) = seq 1 ( .+ , ( F o. ( H o. f ) ) ) ) |
| 56 | 55 | fveq1d | |- ( g = ( H o. f ) -> ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) |
| 57 | 56 | eqeq2d | |- ( g = ( H o. f ) -> ( ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) <-> ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
| 58 | 53 57 | anbi12d | |- ( g = ( H o. f ) -> ( ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( ( H o. f ) : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) |
| 59 | 20 52 58 | spcedv | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
| 60 | 5 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> G e. Mnd ) |
| 61 | 6 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> A e. V ) |
| 62 | 7 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> F : A --> B ) |
| 63 | 8 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ran F C_ ( Z ` ran F ) ) |
| 64 | f1f1orn | |- ( H : ( 1 ... M ) -1-1-> A -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
|
| 65 | 10 64 | syl | |- ( ph -> H : ( 1 ... M ) -1-1-onto-> ran H ) |
| 66 | f1oen3g | |- ( ( H e. _V /\ H : ( 1 ... M ) -1-1-onto-> ran H ) -> ( 1 ... M ) ~~ ran H ) |
|
| 67 | 16 65 66 | syl2anc | |- ( ph -> ( 1 ... M ) ~~ ran H ) |
| 68 | enfi | |- ( ( 1 ... M ) ~~ ran H -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
|
| 69 | 67 68 | syl | |- ( ph -> ( ( 1 ... M ) e. Fin <-> ran H e. Fin ) ) |
| 70 | 22 69 | mpbii | |- ( ph -> ran H e. Fin ) |
| 71 | 70 11 | ssfid | |- ( ph -> ( F supp .0. ) e. Fin ) |
| 72 | 71 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) e. Fin ) |
| 73 | 12 | neeq1i | |- ( W =/= (/) <-> ( ( F o. H ) supp .0. ) =/= (/) ) |
| 74 | supp0cosupp0 | |- ( ( F e. _V /\ H e. _V ) -> ( ( F supp .0. ) = (/) -> ( ( F o. H ) supp .0. ) = (/) ) ) |
|
| 75 | 74 | necon3d | |- ( ( F e. _V /\ H e. _V ) -> ( ( ( F o. H ) supp .0. ) =/= (/) -> ( F supp .0. ) =/= (/) ) ) |
| 76 | 35 38 75 | syl2anc | |- ( ph -> ( ( ( F o. H ) supp .0. ) =/= (/) -> ( F supp .0. ) =/= (/) ) ) |
| 77 | 73 76 | biimtrid | |- ( ph -> ( W =/= (/) -> ( F supp .0. ) =/= (/) ) ) |
| 78 | 77 | imp | |- ( ( ph /\ W =/= (/) ) -> ( F supp .0. ) =/= (/) ) |
| 79 | 78 | adantr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) =/= (/) ) |
| 80 | 11 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) C_ ran H ) |
| 81 | 14 | frnd | |- ( ph -> ran H C_ A ) |
| 82 | 81 | ad2antrr | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ran H C_ A ) |
| 83 | 80 82 | sstrd | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( F supp .0. ) C_ A ) |
| 84 | 1 2 3 4 60 61 62 63 72 79 83 | gsumval3eu | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> E! x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
| 85 | iota1 | |- ( E! x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) = x ) ) |
|
| 86 | 84 85 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) = x ) ) |
| 87 | eqid | |- ( F supp .0. ) = ( F supp .0. ) |
|
| 88 | simprl | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> -. A e. ran ... ) |
|
| 89 | 1 2 3 4 60 61 62 63 72 79 87 88 | gsumval3a | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) |
| 90 | 89 | eqeq1d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( ( G gsum F ) = x <-> ( iota x E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) = x ) ) |
| 91 | 86 90 | bitr4d | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) ) |
| 92 | 91 | alrimiv | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> A. x ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) ) |
| 93 | fvex | |- ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) e. _V |
|
| 94 | eqeq1 | |- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) <-> ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) |
|
| 95 | 94 | anbi2d | |- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) |
| 96 | 95 | exbidv | |- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) ) ) |
| 97 | eqeq2 | |- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( ( G gsum F ) = x <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) |
|
| 98 | 96 97 | bibi12d | |- ( x = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) -> ( ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) <-> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) ) |
| 99 | 93 98 | spcv | |- ( A. x ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ x = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = x ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) |
| 100 | 92 99 | syl | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( E. g ( g : ( 1 ... ( # ` ( F supp .0. ) ) ) -1-1-onto-> ( F supp .0. ) /\ ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) = ( seq 1 ( .+ , ( F o. g ) ) ` ( # ` ( F supp .0. ) ) ) ) <-> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) ) |
| 101 | 59 100 | mpbid | |- ( ( ( ph /\ W =/= (/) ) /\ ( -. A e. ran ... /\ f Isom < , < ( ( 1 ... ( # ` W ) ) , W ) ) ) -> ( G gsum F ) = ( seq 1 ( .+ , ( F o. ( H o. f ) ) ) ` ( # ` W ) ) ) |