This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A relation is empty iff its domain is empty. (Contributed by NM, 15-Sep-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | reldm0 | |- ( Rel A -> ( A = (/) <-> dom A = (/) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rel0 | |- Rel (/) |
|
| 2 | eqrel | |- ( ( Rel A /\ Rel (/) ) -> ( A = (/) <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. (/) ) ) ) |
|
| 3 | 1 2 | mpan2 | |- ( Rel A -> ( A = (/) <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. (/) ) ) ) |
| 4 | eq0 | |- ( dom A = (/) <-> A. x -. x e. dom A ) |
|
| 5 | alnex | |- ( A. y -. <. x , y >. e. A <-> -. E. y <. x , y >. e. A ) |
|
| 6 | vex | |- x e. _V |
|
| 7 | 6 | eldm2 | |- ( x e. dom A <-> E. y <. x , y >. e. A ) |
| 8 | 5 7 | xchbinxr | |- ( A. y -. <. x , y >. e. A <-> -. x e. dom A ) |
| 9 | noel | |- -. <. x , y >. e. (/) |
|
| 10 | 9 | nbn | |- ( -. <. x , y >. e. A <-> ( <. x , y >. e. A <-> <. x , y >. e. (/) ) ) |
| 11 | 10 | albii | |- ( A. y -. <. x , y >. e. A <-> A. y ( <. x , y >. e. A <-> <. x , y >. e. (/) ) ) |
| 12 | 8 11 | bitr3i | |- ( -. x e. dom A <-> A. y ( <. x , y >. e. A <-> <. x , y >. e. (/) ) ) |
| 13 | 12 | albii | |- ( A. x -. x e. dom A <-> A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. (/) ) ) |
| 14 | 4 13 | bitr2i | |- ( A. x A. y ( <. x , y >. e. A <-> <. x , y >. e. (/) ) <-> dom A = (/) ) |
| 15 | 3 14 | bitrdi | |- ( Rel A -> ( A = (/) <-> dom A = (/) ) ) |