This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A sequence that consists entirely of "zeroes" sums to "zero". More precisely, a constant sequence with value an element which is a .+ -idempotent sums (or " .+ 's") to that element. (Contributed by Mario Carneiro, 15-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqid3.1 | |- ( ph -> ( Z .+ Z ) = Z ) |
|
| seqid3.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| seqid3.3 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = Z ) |
||
| Assertion | seqid3 | |- ( ph -> ( seq M ( .+ , F ) ` N ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqid3.1 | |- ( ph -> ( Z .+ Z ) = Z ) |
|
| 2 | seqid3.2 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 3 | seqid3.3 | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) = Z ) |
|
| 4 | fvex | |- ( F ` x ) e. _V |
|
| 5 | 4 | elsn | |- ( ( F ` x ) e. { Z } <-> ( F ` x ) = Z ) |
| 6 | 3 5 | sylibr | |- ( ( ph /\ x e. ( M ... N ) ) -> ( F ` x ) e. { Z } ) |
| 7 | ovex | |- ( Z .+ Z ) e. _V |
|
| 8 | 7 | elsn | |- ( ( Z .+ Z ) e. { Z } <-> ( Z .+ Z ) = Z ) |
| 9 | 1 8 | sylibr | |- ( ph -> ( Z .+ Z ) e. { Z } ) |
| 10 | elsni | |- ( x e. { Z } -> x = Z ) |
|
| 11 | elsni | |- ( y e. { Z } -> y = Z ) |
|
| 12 | 10 11 | oveqan12d | |- ( ( x e. { Z } /\ y e. { Z } ) -> ( x .+ y ) = ( Z .+ Z ) ) |
| 13 | 12 | eleq1d | |- ( ( x e. { Z } /\ y e. { Z } ) -> ( ( x .+ y ) e. { Z } <-> ( Z .+ Z ) e. { Z } ) ) |
| 14 | 9 13 | syl5ibrcom | |- ( ph -> ( ( x e. { Z } /\ y e. { Z } ) -> ( x .+ y ) e. { Z } ) ) |
| 15 | 14 | imp | |- ( ( ph /\ ( x e. { Z } /\ y e. { Z } ) ) -> ( x .+ y ) e. { Z } ) |
| 16 | 2 6 15 | seqcl | |- ( ph -> ( seq M ( .+ , F ) ` N ) e. { Z } ) |
| 17 | elsni | |- ( ( seq M ( .+ , F ) ` N ) e. { Z } -> ( seq M ( .+ , F ) ` N ) = Z ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( seq M ( .+ , F ) ` N ) = Z ) |