This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F contains a sparse set of nonzero values to be summed. The function G is an order isomorphism from the set of nonzero values of F to a 1-based finite sequence, and H collects these nonzero values together. Under these conditions, the sum over the values in H yields the same result as the sum over the original set F . (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqcoll2.1 | |- ( ( ph /\ k e. S ) -> ( Z .+ k ) = k ) |
|
| seqcoll2.1b | |- ( ( ph /\ k e. S ) -> ( k .+ Z ) = k ) |
||
| seqcoll2.c | |- ( ( ph /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
||
| seqcoll2.a | |- ( ph -> Z e. S ) |
||
| seqcoll2.2 | |- ( ph -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
||
| seqcoll2.3 | |- ( ph -> A =/= (/) ) |
||
| seqcoll2.5 | |- ( ph -> A C_ ( M ... N ) ) |
||
| seqcoll2.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. S ) |
||
| seqcoll2.7 | |- ( ( ph /\ k e. ( ( M ... N ) \ A ) ) -> ( F ` k ) = Z ) |
||
| seqcoll2.8 | |- ( ( ph /\ n e. ( 1 ... ( # ` A ) ) ) -> ( H ` n ) = ( F ` ( G ` n ) ) ) |
||
| Assertion | seqcoll2 | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq 1 ( .+ , H ) ` ( # ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqcoll2.1 | |- ( ( ph /\ k e. S ) -> ( Z .+ k ) = k ) |
|
| 2 | seqcoll2.1b | |- ( ( ph /\ k e. S ) -> ( k .+ Z ) = k ) |
|
| 3 | seqcoll2.c | |- ( ( ph /\ ( k e. S /\ n e. S ) ) -> ( k .+ n ) e. S ) |
|
| 4 | seqcoll2.a | |- ( ph -> Z e. S ) |
|
| 5 | seqcoll2.2 | |- ( ph -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
|
| 6 | seqcoll2.3 | |- ( ph -> A =/= (/) ) |
|
| 7 | seqcoll2.5 | |- ( ph -> A C_ ( M ... N ) ) |
|
| 8 | seqcoll2.6 | |- ( ( ph /\ k e. ( M ... N ) ) -> ( F ` k ) e. S ) |
|
| 9 | seqcoll2.7 | |- ( ( ph /\ k e. ( ( M ... N ) \ A ) ) -> ( F ` k ) = Z ) |
|
| 10 | seqcoll2.8 | |- ( ( ph /\ n e. ( 1 ... ( # ` A ) ) ) -> ( H ` n ) = ( F ` ( G ` n ) ) ) |
|
| 11 | fzssuz | |- ( M ... N ) C_ ( ZZ>= ` M ) |
|
| 12 | isof1o | |- ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
|
| 13 | 5 12 | syl | |- ( ph -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 14 | f1of | |- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> G : ( 1 ... ( # ` A ) ) --> A ) |
|
| 15 | 13 14 | syl | |- ( ph -> G : ( 1 ... ( # ` A ) ) --> A ) |
| 16 | fzfi | |- ( M ... N ) e. Fin |
|
| 17 | ssfi | |- ( ( ( M ... N ) e. Fin /\ A C_ ( M ... N ) ) -> A e. Fin ) |
|
| 18 | 16 7 17 | sylancr | |- ( ph -> A e. Fin ) |
| 19 | hasheq0 | |- ( A e. Fin -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
|
| 20 | 18 19 | syl | |- ( ph -> ( ( # ` A ) = 0 <-> A = (/) ) ) |
| 21 | 20 | necon3bbid | |- ( ph -> ( -. ( # ` A ) = 0 <-> A =/= (/) ) ) |
| 22 | 6 21 | mpbird | |- ( ph -> -. ( # ` A ) = 0 ) |
| 23 | hashcl | |- ( A e. Fin -> ( # ` A ) e. NN0 ) |
|
| 24 | 18 23 | syl | |- ( ph -> ( # ` A ) e. NN0 ) |
| 25 | elnn0 | |- ( ( # ` A ) e. NN0 <-> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
|
| 26 | 24 25 | sylib | |- ( ph -> ( ( # ` A ) e. NN \/ ( # ` A ) = 0 ) ) |
| 27 | 26 | ord | |- ( ph -> ( -. ( # ` A ) e. NN -> ( # ` A ) = 0 ) ) |
| 28 | 22 27 | mt3d | |- ( ph -> ( # ` A ) e. NN ) |
| 29 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 30 | 28 29 | eleqtrdi | |- ( ph -> ( # ` A ) e. ( ZZ>= ` 1 ) ) |
| 31 | eluzfz2 | |- ( ( # ` A ) e. ( ZZ>= ` 1 ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
|
| 32 | 30 31 | syl | |- ( ph -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
| 33 | 15 32 | ffvelcdmd | |- ( ph -> ( G ` ( # ` A ) ) e. A ) |
| 34 | 7 33 | sseldd | |- ( ph -> ( G ` ( # ` A ) ) e. ( M ... N ) ) |
| 35 | 11 34 | sselid | |- ( ph -> ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) ) |
| 36 | elfzuz3 | |- ( ( G ` ( # ` A ) ) e. ( M ... N ) -> N e. ( ZZ>= ` ( G ` ( # ` A ) ) ) ) |
|
| 37 | 34 36 | syl | |- ( ph -> N e. ( ZZ>= ` ( G ` ( # ` A ) ) ) ) |
| 38 | fzss2 | |- ( N e. ( ZZ>= ` ( G ` ( # ` A ) ) ) -> ( M ... ( G ` ( # ` A ) ) ) C_ ( M ... N ) ) |
|
| 39 | 37 38 | syl | |- ( ph -> ( M ... ( G ` ( # ` A ) ) ) C_ ( M ... N ) ) |
| 40 | 39 | sselda | |- ( ( ph /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> k e. ( M ... N ) ) |
| 41 | 40 8 | syldan | |- ( ( ph /\ k e. ( M ... ( G ` ( # ` A ) ) ) ) -> ( F ` k ) e. S ) |
| 42 | 35 41 3 | seqcl | |- ( ph -> ( seq M ( .+ , F ) ` ( G ` ( # ` A ) ) ) e. S ) |
| 43 | peano2uz | |- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) -> ( ( G ` ( # ` A ) ) + 1 ) e. ( ZZ>= ` M ) ) |
|
| 44 | 35 43 | syl | |- ( ph -> ( ( G ` ( # ` A ) ) + 1 ) e. ( ZZ>= ` M ) ) |
| 45 | fzss1 | |- ( ( ( G ` ( # ` A ) ) + 1 ) e. ( ZZ>= ` M ) -> ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) C_ ( M ... N ) ) |
|
| 46 | 44 45 | syl | |- ( ph -> ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) C_ ( M ... N ) ) |
| 47 | 46 | sselda | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> k e. ( M ... N ) ) |
| 48 | eluzelre | |- ( ( G ` ( # ` A ) ) e. ( ZZ>= ` M ) -> ( G ` ( # ` A ) ) e. RR ) |
|
| 49 | 35 48 | syl | |- ( ph -> ( G ` ( # ` A ) ) e. RR ) |
| 50 | 49 | adantr | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( G ` ( # ` A ) ) e. RR ) |
| 51 | peano2re | |- ( ( G ` ( # ` A ) ) e. RR -> ( ( G ` ( # ` A ) ) + 1 ) e. RR ) |
|
| 52 | 50 51 | syl | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( ( G ` ( # ` A ) ) + 1 ) e. RR ) |
| 53 | elfzelz | |- ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) -> k e. ZZ ) |
|
| 54 | 53 | zred | |- ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) -> k e. RR ) |
| 55 | 54 | adantl | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> k e. RR ) |
| 56 | 50 | ltp1d | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( G ` ( # ` A ) ) < ( ( G ` ( # ` A ) ) + 1 ) ) |
| 57 | elfzle1 | |- ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) -> ( ( G ` ( # ` A ) ) + 1 ) <_ k ) |
|
| 58 | 57 | adantl | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( ( G ` ( # ` A ) ) + 1 ) <_ k ) |
| 59 | 50 52 55 56 58 | ltletrd | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( G ` ( # ` A ) ) < k ) |
| 60 | 13 | adantr | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> G : ( 1 ... ( # ` A ) ) -1-1-onto-> A ) |
| 61 | f1ocnv | |- ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
|
| 62 | 60 61 | syl | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) ) |
| 63 | f1of | |- ( `' G : A -1-1-onto-> ( 1 ... ( # ` A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
|
| 64 | 62 63 | syl | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> `' G : A --> ( 1 ... ( # ` A ) ) ) |
| 65 | simprr | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> k e. A ) |
|
| 66 | 64 65 | ffvelcdmd | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) |
| 67 | 66 | elfzelzd | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( `' G ` k ) e. ZZ ) |
| 68 | 67 | zred | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( `' G ` k ) e. RR ) |
| 69 | 24 | adantr | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( # ` A ) e. NN0 ) |
| 70 | 69 | nn0red | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( # ` A ) e. RR ) |
| 71 | elfzle2 | |- ( ( `' G ` k ) e. ( 1 ... ( # ` A ) ) -> ( `' G ` k ) <_ ( # ` A ) ) |
|
| 72 | 66 71 | syl | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( `' G ` k ) <_ ( # ` A ) ) |
| 73 | 68 70 72 | lensymd | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> -. ( # ` A ) < ( `' G ` k ) ) |
| 74 | 5 | adantr | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) ) |
| 75 | 32 | adantr | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( # ` A ) e. ( 1 ... ( # ` A ) ) ) |
| 76 | isorel | |- ( ( G Isom < , < ( ( 1 ... ( # ` A ) ) , A ) /\ ( ( # ` A ) e. ( 1 ... ( # ` A ) ) /\ ( `' G ` k ) e. ( 1 ... ( # ` A ) ) ) ) -> ( ( # ` A ) < ( `' G ` k ) <-> ( G ` ( # ` A ) ) < ( G ` ( `' G ` k ) ) ) ) |
|
| 77 | 74 75 66 76 | syl12anc | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( ( # ` A ) < ( `' G ` k ) <-> ( G ` ( # ` A ) ) < ( G ` ( `' G ` k ) ) ) ) |
| 78 | f1ocnvfv2 | |- ( ( G : ( 1 ... ( # ` A ) ) -1-1-onto-> A /\ k e. A ) -> ( G ` ( `' G ` k ) ) = k ) |
|
| 79 | 60 65 78 | syl2anc | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( G ` ( `' G ` k ) ) = k ) |
| 80 | 79 | breq2d | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( ( G ` ( # ` A ) ) < ( G ` ( `' G ` k ) ) <-> ( G ` ( # ` A ) ) < k ) ) |
| 81 | 77 80 | bitrd | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> ( ( # ` A ) < ( `' G ` k ) <-> ( G ` ( # ` A ) ) < k ) ) |
| 82 | 73 81 | mtbid | |- ( ( ph /\ ( k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) /\ k e. A ) ) -> -. ( G ` ( # ` A ) ) < k ) |
| 83 | 82 | expr | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( k e. A -> -. ( G ` ( # ` A ) ) < k ) ) |
| 84 | 59 83 | mt2d | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> -. k e. A ) |
| 85 | 47 84 | eldifd | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> k e. ( ( M ... N ) \ A ) ) |
| 86 | 85 9 | syldan | |- ( ( ph /\ k e. ( ( ( G ` ( # ` A ) ) + 1 ) ... N ) ) -> ( F ` k ) = Z ) |
| 87 | 2 35 37 42 86 | seqid2 | |- ( ph -> ( seq M ( .+ , F ) ` ( G ` ( # ` A ) ) ) = ( seq M ( .+ , F ) ` N ) ) |
| 88 | 7 11 | sstrdi | |- ( ph -> A C_ ( ZZ>= ` M ) ) |
| 89 | 39 | ssdifd | |- ( ph -> ( ( M ... ( G ` ( # ` A ) ) ) \ A ) C_ ( ( M ... N ) \ A ) ) |
| 90 | 89 | sselda | |- ( ( ph /\ k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) -> k e. ( ( M ... N ) \ A ) ) |
| 91 | 90 9 | syldan | |- ( ( ph /\ k e. ( ( M ... ( G ` ( # ` A ) ) ) \ A ) ) -> ( F ` k ) = Z ) |
| 92 | 1 2 3 4 5 32 88 41 91 10 | seqcoll | |- ( ph -> ( seq M ( .+ , F ) ` ( G ` ( # ` A ) ) ) = ( seq 1 ( .+ , H ) ` ( # ` A ) ) ) |
| 93 | 87 92 | eqtr3d | |- ( ph -> ( seq M ( .+ , F ) ` N ) = ( seq 1 ( .+ , H ) ` ( # ` A ) ) ) |