This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A member of an operation's range is a value of the operation. (Contributed by NM, 7-Feb-2007) (Revised by Mario Carneiro, 30-Jan-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovelrn | |- ( F Fn ( A X. B ) -> ( C e. ran F <-> E. x e. A E. y e. B C = ( x F y ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnrnov | |- ( F Fn ( A X. B ) -> ran F = { z | E. x e. A E. y e. B z = ( x F y ) } ) |
|
| 2 | 1 | eleq2d | |- ( F Fn ( A X. B ) -> ( C e. ran F <-> C e. { z | E. x e. A E. y e. B z = ( x F y ) } ) ) |
| 3 | ovex | |- ( x F y ) e. _V |
|
| 4 | eleq1 | |- ( C = ( x F y ) -> ( C e. _V <-> ( x F y ) e. _V ) ) |
|
| 5 | 3 4 | mpbiri | |- ( C = ( x F y ) -> C e. _V ) |
| 6 | 5 | rexlimivw | |- ( E. y e. B C = ( x F y ) -> C e. _V ) |
| 7 | 6 | rexlimivw | |- ( E. x e. A E. y e. B C = ( x F y ) -> C e. _V ) |
| 8 | eqeq1 | |- ( z = C -> ( z = ( x F y ) <-> C = ( x F y ) ) ) |
|
| 9 | 8 | 2rexbidv | |- ( z = C -> ( E. x e. A E. y e. B z = ( x F y ) <-> E. x e. A E. y e. B C = ( x F y ) ) ) |
| 10 | 7 9 | elab3 | |- ( C e. { z | E. x e. A E. y e. B z = ( x F y ) } <-> E. x e. A E. y e. B C = ( x F y ) ) |
| 11 | 2 10 | bitrdi | |- ( F Fn ( A X. B ) -> ( C e. ran F <-> E. x e. A E. y e. B C = ( x F y ) ) ) |