This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Express a constraint on a composition as a constraint on the composand. (Contributed by Stefan O'Rear, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | funcoeqres | |- ( ( Fun G /\ ( F o. G ) = H ) -> ( F |` ran G ) = ( H o. `' G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcocnv2 | |- ( Fun G -> ( G o. `' G ) = ( _I |` ran G ) ) |
|
| 2 | 1 | coeq2d | |- ( Fun G -> ( F o. ( G o. `' G ) ) = ( F o. ( _I |` ran G ) ) ) |
| 3 | coass | |- ( ( F o. G ) o. `' G ) = ( F o. ( G o. `' G ) ) |
|
| 4 | 3 | eqcomi | |- ( F o. ( G o. `' G ) ) = ( ( F o. G ) o. `' G ) |
| 5 | coires1 | |- ( F o. ( _I |` ran G ) ) = ( F |` ran G ) |
|
| 6 | 2 4 5 | 3eqtr3g | |- ( Fun G -> ( ( F o. G ) o. `' G ) = ( F |` ran G ) ) |
| 7 | coeq1 | |- ( ( F o. G ) = H -> ( ( F o. G ) o. `' G ) = ( H o. `' G ) ) |
|
| 8 | 6 7 | sylan9req | |- ( ( Fun G /\ ( F o. G ) = H ) -> ( F |` ran G ) = ( H o. `' G ) ) |