This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Restricted "at most one" is preserved through implication (note wff reversal). (Contributed by Alexander van der Vekens, 17-Jun-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rmoim | |- ( A. x e. A ( ph -> ps ) -> ( E* x e. A ps -> E* x e. A ph ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ral | |- ( A. x e. A ( ph -> ps ) <-> A. x ( x e. A -> ( ph -> ps ) ) ) |
|
| 2 | imdistan | |- ( ( x e. A -> ( ph -> ps ) ) <-> ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) ) |
|
| 3 | 2 | albii | |- ( A. x ( x e. A -> ( ph -> ps ) ) <-> A. x ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) ) |
| 4 | 1 3 | bitri | |- ( A. x e. A ( ph -> ps ) <-> A. x ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) ) |
| 5 | moim | |- ( A. x ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) -> ( E* x ( x e. A /\ ps ) -> E* x ( x e. A /\ ph ) ) ) |
|
| 6 | df-rmo | |- ( E* x e. A ps <-> E* x ( x e. A /\ ps ) ) |
|
| 7 | df-rmo | |- ( E* x e. A ph <-> E* x ( x e. A /\ ph ) ) |
|
| 8 | 5 6 7 | 3imtr4g | |- ( A. x ( ( x e. A /\ ph ) -> ( x e. A /\ ps ) ) -> ( E* x e. A ps -> E* x e. A ph ) ) |
| 9 | 4 8 | sylbi | |- ( A. x e. A ( ph -> ps ) -> ( E* x e. A ps -> E* x e. A ph ) ) |