This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The equalizer of two ring homomorphisms is a subring. (Contributed by Stefan O'Rear, 7-Mar-2015) (Revised by Mario Carneiro, 6-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | rhmeql | |- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubRing ` S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rhmghm | |- ( F e. ( S RingHom T ) -> F e. ( S GrpHom T ) ) |
|
| 2 | rhmghm | |- ( G e. ( S RingHom T ) -> G e. ( S GrpHom T ) ) |
|
| 3 | ghmeql | |- ( ( F e. ( S GrpHom T ) /\ G e. ( S GrpHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |
|
| 4 | 1 2 3 | syl2an | |- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubGrp ` S ) ) |
| 5 | eqid | |- ( mulGrp ` S ) = ( mulGrp ` S ) |
|
| 6 | eqid | |- ( mulGrp ` T ) = ( mulGrp ` T ) |
|
| 7 | 5 6 | rhmmhm | |- ( F e. ( S RingHom T ) -> F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 8 | 5 6 | rhmmhm | |- ( G e. ( S RingHom T ) -> G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) |
| 9 | mhmeql | |- ( ( F e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) /\ G e. ( ( mulGrp ` S ) MndHom ( mulGrp ` T ) ) ) -> dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) |
|
| 10 | 7 8 9 | syl2an | |- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) |
| 11 | rhmrcl1 | |- ( F e. ( S RingHom T ) -> S e. Ring ) |
|
| 12 | 11 | adantr | |- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> S e. Ring ) |
| 13 | 5 | issubrg3 | |- ( S e. Ring -> ( dom ( F i^i G ) e. ( SubRing ` S ) <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) ) ) |
| 14 | 12 13 | syl | |- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> ( dom ( F i^i G ) e. ( SubRing ` S ) <-> ( dom ( F i^i G ) e. ( SubGrp ` S ) /\ dom ( F i^i G ) e. ( SubMnd ` ( mulGrp ` S ) ) ) ) ) |
| 15 | 4 10 14 | mpbir2and | |- ( ( F e. ( S RingHom T ) /\ G e. ( S RingHom T ) ) -> dom ( F i^i G ) e. ( SubRing ` S ) ) |