This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The lifting of scalars is invariant between subalgebras and superalgebras. (Contributed by Mario Carneiro, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ressascl.a | |- A = ( algSc ` W ) |
|
| ressascl.x | |- X = ( W |`s S ) |
||
| Assertion | ressascl | |- ( S e. ( SubRing ` W ) -> A = ( algSc ` X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressascl.a | |- A = ( algSc ` W ) |
|
| 2 | ressascl.x | |- X = ( W |`s S ) |
|
| 3 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 4 | 2 3 | resssca | |- ( S e. ( SubRing ` W ) -> ( Scalar ` W ) = ( Scalar ` X ) ) |
| 5 | 4 | fveq2d | |- ( S e. ( SubRing ` W ) -> ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` X ) ) ) |
| 6 | eqid | |- ( .s ` W ) = ( .s ` W ) |
|
| 7 | 2 6 | ressvsca | |- ( S e. ( SubRing ` W ) -> ( .s ` W ) = ( .s ` X ) ) |
| 8 | eqidd | |- ( S e. ( SubRing ` W ) -> x = x ) |
|
| 9 | eqid | |- ( 1r ` W ) = ( 1r ` W ) |
|
| 10 | 2 9 | subrg1 | |- ( S e. ( SubRing ` W ) -> ( 1r ` W ) = ( 1r ` X ) ) |
| 11 | 7 8 10 | oveq123d | |- ( S e. ( SubRing ` W ) -> ( x ( .s ` W ) ( 1r ` W ) ) = ( x ( .s ` X ) ( 1r ` X ) ) ) |
| 12 | 5 11 | mpteq12dv | |- ( S e. ( SubRing ` W ) -> ( x e. ( Base ` ( Scalar ` W ) ) |-> ( x ( .s ` W ) ( 1r ` W ) ) ) = ( x e. ( Base ` ( Scalar ` X ) ) |-> ( x ( .s ` X ) ( 1r ` X ) ) ) ) |
| 13 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 14 | 1 3 13 6 9 | asclfval | |- A = ( x e. ( Base ` ( Scalar ` W ) ) |-> ( x ( .s ` W ) ( 1r ` W ) ) ) |
| 15 | eqid | |- ( algSc ` X ) = ( algSc ` X ) |
|
| 16 | eqid | |- ( Scalar ` X ) = ( Scalar ` X ) |
|
| 17 | eqid | |- ( Base ` ( Scalar ` X ) ) = ( Base ` ( Scalar ` X ) ) |
|
| 18 | eqid | |- ( .s ` X ) = ( .s ` X ) |
|
| 19 | eqid | |- ( 1r ` X ) = ( 1r ` X ) |
|
| 20 | 15 16 17 18 19 | asclfval | |- ( algSc ` X ) = ( x e. ( Base ` ( Scalar ` X ) ) |-> ( x ( .s ` X ) ( 1r ` X ) ) ) |
| 21 | 12 14 20 | 3eqtr4g | |- ( S e. ( SubRing ` W ) -> A = ( algSc ` X ) ) |