This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set of subrings of a subring are the smaller subrings. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subsubrg.s | |- S = ( R |`s A ) |
|
| Assertion | subsubrg2 | |- ( A e. ( SubRing ` R ) -> ( SubRing ` S ) = ( ( SubRing ` R ) i^i ~P A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subsubrg.s | |- S = ( R |`s A ) |
|
| 2 | 1 | subsubrg | |- ( A e. ( SubRing ` R ) -> ( a e. ( SubRing ` S ) <-> ( a e. ( SubRing ` R ) /\ a C_ A ) ) ) |
| 3 | elin | |- ( a e. ( ( SubRing ` R ) i^i ~P A ) <-> ( a e. ( SubRing ` R ) /\ a e. ~P A ) ) |
|
| 4 | velpw | |- ( a e. ~P A <-> a C_ A ) |
|
| 5 | 4 | anbi2i | |- ( ( a e. ( SubRing ` R ) /\ a e. ~P A ) <-> ( a e. ( SubRing ` R ) /\ a C_ A ) ) |
| 6 | 3 5 | bitr2i | |- ( ( a e. ( SubRing ` R ) /\ a C_ A ) <-> a e. ( ( SubRing ` R ) i^i ~P A ) ) |
| 7 | 2 6 | bitrdi | |- ( A e. ( SubRing ` R ) -> ( a e. ( SubRing ` S ) <-> a e. ( ( SubRing ` R ) i^i ~P A ) ) ) |
| 8 | 7 | eqrdv | |- ( A e. ( SubRing ` R ) -> ( SubRing ` S ) = ( ( SubRing ` R ) i^i ~P A ) ) |