This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The scalar injection is a function into the polynomial algebra. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mplasclf.p | |- P = ( I mPoly R ) |
|
| mplasclf.b | |- B = ( Base ` P ) |
||
| mplasclf.k | |- K = ( Base ` R ) |
||
| mplasclf.a | |- A = ( algSc ` P ) |
||
| mplasclf.i | |- ( ph -> I e. W ) |
||
| mplasclf.r | |- ( ph -> R e. Ring ) |
||
| Assertion | mplasclf | |- ( ph -> A : K --> B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mplasclf.p | |- P = ( I mPoly R ) |
|
| 2 | mplasclf.b | |- B = ( Base ` P ) |
|
| 3 | mplasclf.k | |- K = ( Base ` R ) |
|
| 4 | mplasclf.a | |- A = ( algSc ` P ) |
|
| 5 | mplasclf.i | |- ( ph -> I e. W ) |
|
| 6 | mplasclf.r | |- ( ph -> R e. Ring ) |
|
| 7 | eqid | |- ( Scalar ` P ) = ( Scalar ` P ) |
|
| 8 | 1 | mplring | |- ( ( I e. W /\ R e. Ring ) -> P e. Ring ) |
| 9 | 1 | mpllmod | |- ( ( I e. W /\ R e. Ring ) -> P e. LMod ) |
| 10 | eqid | |- ( Base ` ( Scalar ` P ) ) = ( Base ` ( Scalar ` P ) ) |
|
| 11 | 4 7 8 9 10 2 | asclf | |- ( ( I e. W /\ R e. Ring ) -> A : ( Base ` ( Scalar ` P ) ) --> B ) |
| 12 | 5 6 11 | syl2anc | |- ( ph -> A : ( Base ` ( Scalar ` P ) ) --> B ) |
| 13 | 1 5 6 | mplsca | |- ( ph -> R = ( Scalar ` P ) ) |
| 14 | 13 | fveq2d | |- ( ph -> ( Base ` R ) = ( Base ` ( Scalar ` P ) ) ) |
| 15 | 3 14 | eqtrid | |- ( ph -> K = ( Base ` ( Scalar ` P ) ) ) |
| 16 | 15 | feq2d | |- ( ph -> ( A : K --> B <-> A : ( Base ` ( Scalar ` P ) ) --> B ) ) |
| 17 | 12 16 | mpbird | |- ( ph -> A : K --> B ) |