This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subrings of a ring are a Moore system. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrgmre.b | |- B = ( Base ` R ) |
|
| Assertion | subrgmre | |- ( R e. Ring -> ( SubRing ` R ) e. ( Moore ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrgmre.b | |- B = ( Base ` R ) |
|
| 2 | 1 | subrgss | |- ( a e. ( SubRing ` R ) -> a C_ B ) |
| 3 | velpw | |- ( a e. ~P B <-> a C_ B ) |
|
| 4 | 2 3 | sylibr | |- ( a e. ( SubRing ` R ) -> a e. ~P B ) |
| 5 | 4 | a1i | |- ( R e. Ring -> ( a e. ( SubRing ` R ) -> a e. ~P B ) ) |
| 6 | 5 | ssrdv | |- ( R e. Ring -> ( SubRing ` R ) C_ ~P B ) |
| 7 | 1 | subrgid | |- ( R e. Ring -> B e. ( SubRing ` R ) ) |
| 8 | subrgint | |- ( ( a C_ ( SubRing ` R ) /\ a =/= (/) ) -> |^| a e. ( SubRing ` R ) ) |
|
| 9 | 8 | 3adant1 | |- ( ( R e. Ring /\ a C_ ( SubRing ` R ) /\ a =/= (/) ) -> |^| a e. ( SubRing ` R ) ) |
| 10 | 6 7 9 | ismred | |- ( R e. Ring -> ( SubRing ` R ) e. ( Moore ` B ) ) |