This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The algebraic closure is the ring closure when the generating set is expanded to include all scalars.EDITORIAL : In light of this, is AlgSpan independently needed? (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | aspval2.a | |- A = ( AlgSpan ` W ) |
|
| aspval2.c | |- C = ( algSc ` W ) |
||
| aspval2.r | |- R = ( mrCls ` ( SubRing ` W ) ) |
||
| aspval2.v | |- V = ( Base ` W ) |
||
| Assertion | aspval2 | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = ( R ` ( ran C u. S ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | aspval2.a | |- A = ( AlgSpan ` W ) |
|
| 2 | aspval2.c | |- C = ( algSc ` W ) |
|
| 3 | aspval2.r | |- R = ( mrCls ` ( SubRing ` W ) ) |
|
| 4 | aspval2.v | |- V = ( Base ` W ) |
|
| 5 | elin | |- ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) <-> ( x e. ( SubRing ` W ) /\ x e. ( LSubSp ` W ) ) ) |
|
| 6 | 5 | anbi1i | |- ( ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) <-> ( ( x e. ( SubRing ` W ) /\ x e. ( LSubSp ` W ) ) /\ S C_ x ) ) |
| 7 | anass | |- ( ( ( x e. ( SubRing ` W ) /\ x e. ( LSubSp ` W ) ) /\ S C_ x ) <-> ( x e. ( SubRing ` W ) /\ ( x e. ( LSubSp ` W ) /\ S C_ x ) ) ) |
|
| 8 | 6 7 | bitri | |- ( ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) <-> ( x e. ( SubRing ` W ) /\ ( x e. ( LSubSp ` W ) /\ S C_ x ) ) ) |
| 9 | eqid | |- ( LSubSp ` W ) = ( LSubSp ` W ) |
|
| 10 | 2 9 | issubassa2 | |- ( ( W e. AssAlg /\ x e. ( SubRing ` W ) ) -> ( x e. ( LSubSp ` W ) <-> ran C C_ x ) ) |
| 11 | 10 | anbi1d | |- ( ( W e. AssAlg /\ x e. ( SubRing ` W ) ) -> ( ( x e. ( LSubSp ` W ) /\ S C_ x ) <-> ( ran C C_ x /\ S C_ x ) ) ) |
| 12 | unss | |- ( ( ran C C_ x /\ S C_ x ) <-> ( ran C u. S ) C_ x ) |
|
| 13 | 11 12 | bitrdi | |- ( ( W e. AssAlg /\ x e. ( SubRing ` W ) ) -> ( ( x e. ( LSubSp ` W ) /\ S C_ x ) <-> ( ran C u. S ) C_ x ) ) |
| 14 | 13 | pm5.32da | |- ( W e. AssAlg -> ( ( x e. ( SubRing ` W ) /\ ( x e. ( LSubSp ` W ) /\ S C_ x ) ) <-> ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) ) ) |
| 15 | 8 14 | bitrid | |- ( W e. AssAlg -> ( ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) <-> ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) ) ) |
| 16 | 15 | abbidv | |- ( W e. AssAlg -> { x | ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) } = { x | ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) } ) |
| 17 | 16 | adantr | |- ( ( W e. AssAlg /\ S C_ V ) -> { x | ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) } = { x | ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) } ) |
| 18 | df-rab | |- { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } = { x | ( x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) /\ S C_ x ) } |
|
| 19 | df-rab | |- { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } = { x | ( x e. ( SubRing ` W ) /\ ( ran C u. S ) C_ x ) } |
|
| 20 | 17 18 19 | 3eqtr4g | |- ( ( W e. AssAlg /\ S C_ V ) -> { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } = { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) |
| 21 | 20 | inteqd | |- ( ( W e. AssAlg /\ S C_ V ) -> |^| { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } = |^| { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) |
| 22 | 1 4 9 | aspval | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = |^| { x e. ( ( SubRing ` W ) i^i ( LSubSp ` W ) ) | S C_ x } ) |
| 23 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 24 | 4 | subrgmre | |- ( W e. Ring -> ( SubRing ` W ) e. ( Moore ` V ) ) |
| 25 | 23 24 | syl | |- ( W e. AssAlg -> ( SubRing ` W ) e. ( Moore ` V ) ) |
| 26 | eqid | |- ( Scalar ` W ) = ( Scalar ` W ) |
|
| 27 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 28 | eqid | |- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
|
| 29 | 2 26 23 27 28 4 | asclf | |- ( W e. AssAlg -> C : ( Base ` ( Scalar ` W ) ) --> V ) |
| 30 | 29 | frnd | |- ( W e. AssAlg -> ran C C_ V ) |
| 31 | 30 | adantr | |- ( ( W e. AssAlg /\ S C_ V ) -> ran C C_ V ) |
| 32 | simpr | |- ( ( W e. AssAlg /\ S C_ V ) -> S C_ V ) |
|
| 33 | 31 32 | unssd | |- ( ( W e. AssAlg /\ S C_ V ) -> ( ran C u. S ) C_ V ) |
| 34 | 3 | mrcval | |- ( ( ( SubRing ` W ) e. ( Moore ` V ) /\ ( ran C u. S ) C_ V ) -> ( R ` ( ran C u. S ) ) = |^| { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) |
| 35 | 25 33 34 | syl2an2r | |- ( ( W e. AssAlg /\ S C_ V ) -> ( R ` ( ran C u. S ) ) = |^| { x e. ( SubRing ` W ) | ( ran C u. S ) C_ x } ) |
| 36 | 21 22 35 | 3eqtr4d | |- ( ( W e. AssAlg /\ S C_ V ) -> ( A ` S ) = ( R ` ( ran C u. S ) ) ) |