This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In a closure system which is cut off above some level, closures below that level act as normal. (Contributed by Stefan O'Rear, 9-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | submrc.f | |- F = ( mrCls ` C ) |
|
| submrc.g | |- G = ( mrCls ` ( C i^i ~P D ) ) |
||
| Assertion | submrc | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( G ` U ) = ( F ` U ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | submrc.f | |- F = ( mrCls ` C ) |
|
| 2 | submrc.g | |- G = ( mrCls ` ( C i^i ~P D ) ) |
|
| 3 | submre | |- ( ( C e. ( Moore ` X ) /\ D e. C ) -> ( C i^i ~P D ) e. ( Moore ` D ) ) |
|
| 4 | 3 | 3adant3 | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( C i^i ~P D ) e. ( Moore ` D ) ) |
| 5 | simp1 | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> C e. ( Moore ` X ) ) |
|
| 6 | simp3 | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> U C_ D ) |
|
| 7 | mress | |- ( ( C e. ( Moore ` X ) /\ D e. C ) -> D C_ X ) |
|
| 8 | 7 | 3adant3 | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> D C_ X ) |
| 9 | 6 8 | sstrd | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> U C_ X ) |
| 10 | 5 1 9 | mrcssidd | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> U C_ ( F ` U ) ) |
| 11 | 1 | mrccl | |- ( ( C e. ( Moore ` X ) /\ U C_ X ) -> ( F ` U ) e. C ) |
| 12 | 5 9 11 | syl2anc | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) e. C ) |
| 13 | 1 | mrcsscl | |- ( ( C e. ( Moore ` X ) /\ U C_ D /\ D e. C ) -> ( F ` U ) C_ D ) |
| 14 | 13 | 3com23 | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) C_ D ) |
| 15 | fvex | |- ( F ` U ) e. _V |
|
| 16 | 15 | elpw | |- ( ( F ` U ) e. ~P D <-> ( F ` U ) C_ D ) |
| 17 | 14 16 | sylibr | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) e. ~P D ) |
| 18 | 12 17 | elind | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) e. ( C i^i ~P D ) ) |
| 19 | 2 | mrcsscl | |- ( ( ( C i^i ~P D ) e. ( Moore ` D ) /\ U C_ ( F ` U ) /\ ( F ` U ) e. ( C i^i ~P D ) ) -> ( G ` U ) C_ ( F ` U ) ) |
| 20 | 4 10 18 19 | syl3anc | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( G ` U ) C_ ( F ` U ) ) |
| 21 | 4 2 6 | mrcssidd | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> U C_ ( G ` U ) ) |
| 22 | 2 | mrccl | |- ( ( ( C i^i ~P D ) e. ( Moore ` D ) /\ U C_ D ) -> ( G ` U ) e. ( C i^i ~P D ) ) |
| 23 | 4 6 22 | syl2anc | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( G ` U ) e. ( C i^i ~P D ) ) |
| 24 | 23 | elin1d | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( G ` U ) e. C ) |
| 25 | 1 | mrcsscl | |- ( ( C e. ( Moore ` X ) /\ U C_ ( G ` U ) /\ ( G ` U ) e. C ) -> ( F ` U ) C_ ( G ` U ) ) |
| 26 | 5 21 24 25 | syl3anc | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( F ` U ) C_ ( G ` U ) ) |
| 27 | 20 26 | eqssd | |- ( ( C e. ( Moore ` X ) /\ D e. C /\ U C_ D ) -> ( G ` U ) = ( F ` U ) ) |