This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The antiderivative of a power of the logarithm. (Set A = 1 and multiply by ( -u 1 ) ^ N x. N ! to get the antiderivative of log ( x ) ^ N itself.) (Contributed by Mario Carneiro, 22-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | advlogexp | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) = ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fzfid | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 0 ... N ) e. Fin ) |
|
| 2 | rpcn | |- ( x e. RR+ -> x e. CC ) |
|
| 3 | 2 | adantl | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> x e. CC ) |
| 4 | rpdivcl | |- ( ( A e. RR+ /\ x e. RR+ ) -> ( A / x ) e. RR+ ) |
|
| 5 | 4 | adantlr | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( A / x ) e. RR+ ) |
| 6 | 5 | relogcld | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) e. RR ) |
| 7 | elfznn0 | |- ( k e. ( 0 ... N ) -> k e. NN0 ) |
|
| 8 | reexpcl | |- ( ( ( log ` ( A / x ) ) e. RR /\ k e. NN0 ) -> ( ( log ` ( A / x ) ) ^ k ) e. RR ) |
|
| 9 | 6 7 8 | syl2an | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ( log ` ( A / x ) ) ^ k ) e. RR ) |
| 10 | 7 | adantl | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> k e. NN0 ) |
| 11 | 10 | faccld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ! ` k ) e. NN ) |
| 12 | 9 11 | nndivred | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) e. RR ) |
| 13 | 12 | recnd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) e. CC ) |
| 14 | 1 3 13 | fsummulc2 | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ k e. ( 0 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) |
| 15 | simplr | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> N e. NN0 ) |
|
| 16 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 17 | 15 16 | eleqtrdi | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> N e. ( ZZ>= ` 0 ) ) |
| 18 | 3 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> x e. CC ) |
| 19 | 18 13 | mulcld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 0 ... N ) ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) e. CC ) |
| 20 | oveq2 | |- ( k = 0 -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ 0 ) ) |
|
| 21 | fveq2 | |- ( k = 0 -> ( ! ` k ) = ( ! ` 0 ) ) |
|
| 22 | fac0 | |- ( ! ` 0 ) = 1 |
|
| 23 | 21 22 | eqtrdi | |- ( k = 0 -> ( ! ` k ) = 1 ) |
| 24 | 20 23 | oveq12d | |- ( k = 0 -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) |
| 25 | 24 | oveq2d | |- ( k = 0 -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) ) |
| 26 | 17 19 25 | fsum1p | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( 0 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) + sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) |
| 27 | 6 | recnd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) e. CC ) |
| 28 | 27 | exp0d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( log ` ( A / x ) ) ^ 0 ) = 1 ) |
| 29 | 28 | oveq1d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) = ( 1 / 1 ) ) |
| 30 | 1div1e1 | |- ( 1 / 1 ) = 1 |
|
| 31 | 29 30 | eqtrdi | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) = 1 ) |
| 32 | 31 | oveq2d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) = ( x x. 1 ) ) |
| 33 | 3 | mulridd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. 1 ) = x ) |
| 34 | 32 33 | eqtrd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) = x ) |
| 35 | 1zzd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> 1 e. ZZ ) |
|
| 36 | nn0z | |- ( N e. NN0 -> N e. ZZ ) |
|
| 37 | 36 | ad2antlr | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> N e. ZZ ) |
| 38 | fz1ssfz0 | |- ( 1 ... N ) C_ ( 0 ... N ) |
|
| 39 | 38 | sseli | |- ( k e. ( 1 ... N ) -> k e. ( 0 ... N ) ) |
| 40 | 39 19 | sylan2 | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ k e. ( 1 ... N ) ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) e. CC ) |
| 41 | oveq2 | |- ( k = ( j + 1 ) -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) ) |
|
| 42 | fveq2 | |- ( k = ( j + 1 ) -> ( ! ` k ) = ( ! ` ( j + 1 ) ) ) |
|
| 43 | 41 42 | oveq12d | |- ( k = ( j + 1 ) -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) |
| 44 | 43 | oveq2d | |- ( k = ( j + 1 ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 45 | 35 35 37 40 44 | fsumshftm | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( 1 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 46 | 0p1e1 | |- ( 0 + 1 ) = 1 |
|
| 47 | 46 | oveq1i | |- ( ( 0 + 1 ) ... N ) = ( 1 ... N ) |
| 48 | 47 | sumeq1i | |- sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ k e. ( 1 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) |
| 49 | 48 | a1i | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ k e. ( 1 ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) |
| 50 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 51 | 50 | oveq1i | |- ( ( 1 - 1 ) ..^ N ) = ( 0 ..^ N ) |
| 52 | fzoval | |- ( N e. ZZ -> ( ( 1 - 1 ) ..^ N ) = ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
|
| 53 | 37 52 | syl | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( 1 - 1 ) ..^ N ) = ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
| 54 | 51 53 | eqtr3id | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 0 ..^ N ) = ( ( 1 - 1 ) ... ( N - 1 ) ) ) |
| 55 | 54 | sumeq1d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) = sum_ j e. ( ( 1 - 1 ) ... ( N - 1 ) ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 56 | 45 49 55 | 3eqtr4d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 57 | 34 56 | oveq12d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( x x. ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) + sum_ k e. ( ( 0 + 1 ) ... N ) ( x x. ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) = ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) |
| 58 | 14 26 57 | 3eqtrd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) = ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) |
| 59 | 58 | mpteq2dva | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) = ( x e. RR+ |-> ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) ) |
| 60 | 59 | oveq2d | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) = ( RR _D ( x e. RR+ |-> ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) ) ) |
| 61 | reelprrecn | |- RR e. { RR , CC } |
|
| 62 | 61 | a1i | |- ( ( A e. RR+ /\ N e. NN0 ) -> RR e. { RR , CC } ) |
| 63 | 1cnd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> 1 e. CC ) |
|
| 64 | recn | |- ( x e. RR -> x e. CC ) |
|
| 65 | 64 | adantl | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR ) -> x e. CC ) |
| 66 | 1cnd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR ) -> 1 e. CC ) |
|
| 67 | 62 | dvmptid | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR |-> x ) ) = ( x e. RR |-> 1 ) ) |
| 68 | rpssre | |- RR+ C_ RR |
|
| 69 | 68 | a1i | |- ( ( A e. RR+ /\ N e. NN0 ) -> RR+ C_ RR ) |
| 70 | tgioo4 | |- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
|
| 71 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 72 | ioorp | |- ( 0 (,) +oo ) = RR+ |
|
| 73 | iooretop | |- ( 0 (,) +oo ) e. ( topGen ` ran (,) ) |
|
| 74 | 72 73 | eqeltrri | |- RR+ e. ( topGen ` ran (,) ) |
| 75 | 74 | a1i | |- ( ( A e. RR+ /\ N e. NN0 ) -> RR+ e. ( topGen ` ran (,) ) ) |
| 76 | 62 65 66 67 69 70 71 75 | dvmptres | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) |
| 77 | fzofi | |- ( 0 ..^ N ) e. Fin |
|
| 78 | 77 | a1i | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 0 ..^ N ) e. Fin ) |
| 79 | 3 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> x e. CC ) |
| 80 | elfzonn0 | |- ( j e. ( 0 ..^ N ) -> j e. NN0 ) |
|
| 81 | peano2nn0 | |- ( j e. NN0 -> ( j + 1 ) e. NN0 ) |
|
| 82 | 80 81 | syl | |- ( j e. ( 0 ..^ N ) -> ( j + 1 ) e. NN0 ) |
| 83 | reexpcl | |- ( ( ( log ` ( A / x ) ) e. RR /\ ( j + 1 ) e. NN0 ) -> ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) e. RR ) |
|
| 84 | 6 82 83 | syl2an | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) e. RR ) |
| 85 | 82 | adantl | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. NN0 ) |
| 86 | 85 | faccld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) e. NN ) |
| 87 | 84 86 | nndivred | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. RR ) |
| 88 | 87 | recnd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. CC ) |
| 89 | 79 88 | mulcld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
| 90 | 78 89 | fsumcl | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
| 91 | 6 15 | reexpcld | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( log ` ( A / x ) ) ^ N ) e. RR ) |
| 92 | faccl | |- ( N e. NN0 -> ( ! ` N ) e. NN ) |
|
| 93 | 92 | ad2antlr | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ! ` N ) e. NN ) |
| 94 | 91 93 | nndivred | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. RR ) |
| 95 | 94 | recnd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. CC ) |
| 96 | ax-1cn | |- 1 e. CC |
|
| 97 | subcl | |- ( ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. CC /\ 1 e. CC ) -> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) e. CC ) |
|
| 98 | 95 96 97 | sylancl | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) e. CC ) |
| 99 | 77 | a1i | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( 0 ..^ N ) e. Fin ) |
| 100 | 89 | an32s | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
| 101 | 100 | 3impa | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) /\ x e. RR+ ) -> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) e. CC ) |
| 102 | reexpcl | |- ( ( ( log ` ( A / x ) ) e. RR /\ j e. NN0 ) -> ( ( log ` ( A / x ) ) ^ j ) e. RR ) |
|
| 103 | 6 80 102 | syl2an | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( log ` ( A / x ) ) ^ j ) e. RR ) |
| 104 | 80 | adantl | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> j e. NN0 ) |
| 105 | 104 | faccld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` j ) e. NN ) |
| 106 | 103 105 | nndivred | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) e. RR ) |
| 107 | 106 | recnd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) e. CC ) |
| 108 | 88 107 | subcld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) e. CC ) |
| 109 | 108 | an32s | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) e. CC ) |
| 110 | 109 | 3impa | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) e. CC ) |
| 111 | 61 | a1i | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> RR e. { RR , CC } ) |
| 112 | 2 | adantl | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> x e. CC ) |
| 113 | 1cnd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> 1 e. CC ) |
|
| 114 | 76 | adantr | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> x ) ) = ( x e. RR+ |-> 1 ) ) |
| 115 | 88 | an32s | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. CC ) |
| 116 | negex | |- -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. _V |
|
| 117 | 116 | a1i | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. _V ) |
| 118 | cnelprrecn | |- CC e. { RR , CC } |
|
| 119 | 118 | a1i | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> CC e. { RR , CC } ) |
| 120 | 27 | adantlr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) e. CC ) |
| 121 | negex | |- -u ( 1 / x ) e. _V |
|
| 122 | 121 | a1i | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> -u ( 1 / x ) e. _V ) |
| 123 | id | |- ( y e. CC -> y e. CC ) |
|
| 124 | 80 | adantl | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> j e. NN0 ) |
| 125 | 124 81 | syl | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. NN0 ) |
| 126 | expcl | |- ( ( y e. CC /\ ( j + 1 ) e. NN0 ) -> ( y ^ ( j + 1 ) ) e. CC ) |
|
| 127 | 123 125 126 | syl2anr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( y ^ ( j + 1 ) ) e. CC ) |
| 128 | 125 | faccld | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) e. NN ) |
| 129 | 128 | nncnd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) e. CC ) |
| 130 | 129 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) e. CC ) |
| 131 | 128 | nnne0d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` ( j + 1 ) ) =/= 0 ) |
| 132 | 131 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) =/= 0 ) |
| 133 | 127 130 132 | divcld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) e. CC ) |
| 134 | expcl | |- ( ( y e. CC /\ j e. NN0 ) -> ( y ^ j ) e. CC ) |
|
| 135 | 123 124 134 | syl2anr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( y ^ j ) e. CC ) |
| 136 | 124 | faccld | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` j ) e. NN ) |
| 137 | 136 | nncnd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( ! ` j ) e. CC ) |
| 138 | 137 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` j ) e. CC ) |
| 139 | 124 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> j e. NN0 ) |
| 140 | 139 | faccld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` j ) e. NN ) |
| 141 | 140 | nnne0d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` j ) =/= 0 ) |
| 142 | 135 138 141 | divcld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( y ^ j ) / ( ! ` j ) ) e. CC ) |
| 143 | simplll | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> A e. RR+ ) |
|
| 144 | simpr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> x e. RR+ ) |
|
| 145 | 143 144 | relogdivd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` ( A / x ) ) = ( ( log ` A ) - ( log ` x ) ) ) |
| 146 | 145 | mpteq2dva | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( x e. RR+ |-> ( log ` ( A / x ) ) ) = ( x e. RR+ |-> ( ( log ` A ) - ( log ` x ) ) ) ) |
| 147 | 146 | oveq2d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` ( A / x ) ) ) ) = ( RR _D ( x e. RR+ |-> ( ( log ` A ) - ( log ` x ) ) ) ) ) |
| 148 | relogcl | |- ( A e. RR+ -> ( log ` A ) e. RR ) |
|
| 149 | 148 | ad2antrr | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log ` A ) e. RR ) |
| 150 | 149 | recnd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log ` A ) e. CC ) |
| 151 | 150 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` A ) e. CC ) |
| 152 | 0cnd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> 0 e. CC ) |
|
| 153 | 150 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> ( log ` A ) e. CC ) |
| 154 | 0cnd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR ) -> 0 e. CC ) |
|
| 155 | 111 150 | dvmptc | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR |-> ( log ` A ) ) ) = ( x e. RR |-> 0 ) ) |
| 156 | 68 | a1i | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> RR+ C_ RR ) |
| 157 | 74 | a1i | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> RR+ e. ( topGen ` ran (,) ) ) |
| 158 | 111 153 154 155 156 70 71 157 | dvmptres | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` A ) ) ) = ( x e. RR+ |-> 0 ) ) |
| 159 | 144 | relogcld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` x ) e. RR ) |
| 160 | 159 | recnd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( log ` x ) e. CC ) |
| 161 | 144 | rpreccld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( 1 / x ) e. RR+ ) |
| 162 | relogf1o | |- ( log |` RR+ ) : RR+ -1-1-onto-> RR |
|
| 163 | f1of | |- ( ( log |` RR+ ) : RR+ -1-1-onto-> RR -> ( log |` RR+ ) : RR+ --> RR ) |
|
| 164 | 162 163 | mp1i | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log |` RR+ ) : RR+ --> RR ) |
| 165 | 164 | feqmptd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) ) |
| 166 | fvres | |- ( x e. RR+ -> ( ( log |` RR+ ) ` x ) = ( log ` x ) ) |
|
| 167 | 166 | mpteq2ia | |- ( x e. RR+ |-> ( ( log |` RR+ ) ` x ) ) = ( x e. RR+ |-> ( log ` x ) ) |
| 168 | 165 167 | eqtrdi | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( log |` RR+ ) = ( x e. RR+ |-> ( log ` x ) ) ) |
| 169 | 168 | oveq2d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( log |` RR+ ) ) = ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) ) |
| 170 | dvrelog | |- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
|
| 171 | 169 170 | eqtr3di | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` x ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) ) |
| 172 | 111 151 152 158 160 161 171 | dvmptsub | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( ( log ` A ) - ( log ` x ) ) ) ) = ( x e. RR+ |-> ( 0 - ( 1 / x ) ) ) ) |
| 173 | 147 172 | eqtrd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` ( A / x ) ) ) ) = ( x e. RR+ |-> ( 0 - ( 1 / x ) ) ) ) |
| 174 | df-neg | |- -u ( 1 / x ) = ( 0 - ( 1 / x ) ) |
|
| 175 | 174 | mpteq2i | |- ( x e. RR+ |-> -u ( 1 / x ) ) = ( x e. RR+ |-> ( 0 - ( 1 / x ) ) ) |
| 176 | 173 175 | eqtr4di | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( log ` ( A / x ) ) ) ) = ( x e. RR+ |-> -u ( 1 / x ) ) ) |
| 177 | ovexd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) e. _V ) |
|
| 178 | nn0p1nn | |- ( j e. NN0 -> ( j + 1 ) e. NN ) |
|
| 179 | 124 178 | syl | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) e. NN ) |
| 180 | dvexp | |- ( ( j + 1 ) e. NN -> ( CC _D ( y e. CC |-> ( y ^ ( j + 1 ) ) ) ) = ( y e. CC |-> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) ) ) |
|
| 181 | 179 180 | syl | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( CC _D ( y e. CC |-> ( y ^ ( j + 1 ) ) ) ) = ( y e. CC |-> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) ) ) |
| 182 | 119 127 177 181 129 131 | dvmptdivc | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( CC _D ( y e. CC |-> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( y e. CC |-> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) ) ) |
| 183 | 124 | nn0cnd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> j e. CC ) |
| 184 | 183 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> j e. CC ) |
| 185 | pncan | |- ( ( j e. CC /\ 1 e. CC ) -> ( ( j + 1 ) - 1 ) = j ) |
|
| 186 | 184 96 185 | sylancl | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( j + 1 ) - 1 ) = j ) |
| 187 | 186 | oveq2d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( y ^ ( ( j + 1 ) - 1 ) ) = ( y ^ j ) ) |
| 188 | 187 | oveq2d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) = ( ( j + 1 ) x. ( y ^ j ) ) ) |
| 189 | facp1 | |- ( j e. NN0 -> ( ! ` ( j + 1 ) ) = ( ( ! ` j ) x. ( j + 1 ) ) ) |
|
| 190 | 139 189 | syl | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) = ( ( ! ` j ) x. ( j + 1 ) ) ) |
| 191 | peano2cn | |- ( j e. CC -> ( j + 1 ) e. CC ) |
|
| 192 | 184 191 | syl | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( j + 1 ) e. CC ) |
| 193 | 138 192 | mulcomd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ! ` j ) x. ( j + 1 ) ) = ( ( j + 1 ) x. ( ! ` j ) ) ) |
| 194 | 190 193 | eqtrd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ! ` ( j + 1 ) ) = ( ( j + 1 ) x. ( ! ` j ) ) ) |
| 195 | 188 194 | oveq12d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) = ( ( ( j + 1 ) x. ( y ^ j ) ) / ( ( j + 1 ) x. ( ! ` j ) ) ) ) |
| 196 | 179 | nnne0d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( j + 1 ) =/= 0 ) |
| 197 | 196 | adantr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( j + 1 ) =/= 0 ) |
| 198 | 135 138 192 141 197 | divcan5d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ( j + 1 ) x. ( y ^ j ) ) / ( ( j + 1 ) x. ( ! ` j ) ) ) = ( ( y ^ j ) / ( ! ` j ) ) ) |
| 199 | 195 198 | eqtrd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ y e. CC ) -> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) = ( ( y ^ j ) / ( ! ` j ) ) ) |
| 200 | 199 | mpteq2dva | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( y e. CC |-> ( ( ( j + 1 ) x. ( y ^ ( ( j + 1 ) - 1 ) ) ) / ( ! ` ( j + 1 ) ) ) ) = ( y e. CC |-> ( ( y ^ j ) / ( ! ` j ) ) ) ) |
| 201 | 182 200 | eqtrd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( CC _D ( y e. CC |-> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( y e. CC |-> ( ( y ^ j ) / ( ! ` j ) ) ) ) |
| 202 | oveq1 | |- ( y = ( log ` ( A / x ) ) -> ( y ^ ( j + 1 ) ) = ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) ) |
|
| 203 | 202 | oveq1d | |- ( y = ( log ` ( A / x ) ) -> ( ( y ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) = ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) |
| 204 | oveq1 | |- ( y = ( log ` ( A / x ) ) -> ( y ^ j ) = ( ( log ` ( A / x ) ) ^ j ) ) |
|
| 205 | 204 | oveq1d | |- ( y = ( log ` ( A / x ) ) -> ( ( y ^ j ) / ( ! ` j ) ) = ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 206 | 111 119 120 122 133 142 176 201 203 205 | dvmptco | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) ) ) |
| 207 | 107 | an32s | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) e. CC ) |
| 208 | 161 | rpcnd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( 1 / x ) e. CC ) |
| 209 | 207 208 | mulneg2d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) = -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. ( 1 / x ) ) ) |
| 210 | rpne0 | |- ( x e. RR+ -> x =/= 0 ) |
|
| 211 | 210 | adantl | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> x =/= 0 ) |
| 212 | 207 112 211 | divrecd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) = ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. ( 1 / x ) ) ) |
| 213 | 212 | negeqd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) = -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. ( 1 / x ) ) ) |
| 214 | 209 213 | eqtr4d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) = -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) ) |
| 215 | 214 | mpteq2dva | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) x. -u ( 1 / x ) ) ) = ( x e. RR+ |-> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) ) ) |
| 216 | 206 215 | eqtrd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) = ( x e. RR+ |-> -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) ) ) |
| 217 | 111 112 113 114 115 117 216 | dvmptmul | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) ) ) |
| 218 | 88 | mullidd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) = ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) |
| 219 | simplr | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> x e. RR+ ) |
|
| 220 | 106 219 | rerpdivcld | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. RR ) |
| 221 | 220 | recnd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) e. CC ) |
| 222 | 221 79 | mulneg1d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = -u ( ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) |
| 223 | 211 | an32s | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> x =/= 0 ) |
| 224 | 107 79 223 | divcan1d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 225 | 224 | negeqd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> -u ( ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 226 | 222 225 | eqtrd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) = -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 227 | 218 226 | oveq12d | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) + -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
| 228 | 88 107 | negsubd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) + -u ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
| 229 | 227 228 | eqtrd | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) /\ j e. ( 0 ..^ N ) ) -> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
| 230 | 229 | an32s | |- ( ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) /\ x e. RR+ ) -> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) = ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) |
| 231 | 230 | mpteq2dva | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( x e. RR+ |-> ( ( 1 x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) + ( -u ( ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) / x ) x. x ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) ) |
| 232 | 217 231 | eqtrd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ j e. ( 0 ..^ N ) ) -> ( RR _D ( x e. RR+ |-> ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) ) |
| 233 | 70 71 62 75 99 101 110 232 | dvmptfsum | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) ) |
| 234 | oveq2 | |- ( k = j -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ j ) ) |
|
| 235 | fveq2 | |- ( k = j -> ( ! ` k ) = ( ! ` j ) ) |
|
| 236 | 234 235 | oveq12d | |- ( k = j -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) |
| 237 | oveq2 | |- ( k = N -> ( ( log ` ( A / x ) ) ^ k ) = ( ( log ` ( A / x ) ) ^ N ) ) |
|
| 238 | fveq2 | |- ( k = N -> ( ! ` k ) = ( ! ` N ) ) |
|
| 239 | 237 238 | oveq12d | |- ( k = N -> ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) = ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) |
| 240 | 236 43 24 239 17 13 | telfsumo2 | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) = ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) ) |
| 241 | 31 | oveq2d | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - ( ( ( log ` ( A / x ) ) ^ 0 ) / 1 ) ) = ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) |
| 242 | 240 241 | eqtrd | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) = ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) |
| 243 | 242 | mpteq2dva | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) - ( ( ( log ` ( A / x ) ) ^ j ) / ( ! ` j ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) |
| 244 | 233 243 | eqtrd | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) = ( x e. RR+ |-> ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) |
| 245 | 62 3 63 76 90 98 244 | dvmptadd | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x + sum_ j e. ( 0 ..^ N ) ( x x. ( ( ( log ` ( A / x ) ) ^ ( j + 1 ) ) / ( ! ` ( j + 1 ) ) ) ) ) ) ) = ( x e. RR+ |-> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) ) |
| 246 | pncan3 | |- ( ( 1 e. CC /\ ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) e. CC ) -> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) = ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) |
|
| 247 | 96 95 246 | sylancr | |- ( ( ( A e. RR+ /\ N e. NN0 ) /\ x e. RR+ ) -> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) = ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) |
| 248 | 247 | mpteq2dva | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( x e. RR+ |-> ( 1 + ( ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) - 1 ) ) ) = ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) ) |
| 249 | 60 245 248 | 3eqtrd | |- ( ( A e. RR+ /\ N e. NN0 ) -> ( RR _D ( x e. RR+ |-> ( x x. sum_ k e. ( 0 ... N ) ( ( ( log ` ( A / x ) ) ^ k ) / ( ! ` k ) ) ) ) ) = ( x e. RR+ |-> ( ( ( log ` ( A / x ) ) ^ N ) / ( ! ` N ) ) ) ) |