This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the half-open integer set in terms of the closed integer set. (Contributed by Stefan O'Rear, 14-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fzoval | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( m = M -> m = M ) |
|
| 2 | oveq1 | |- ( n = N -> ( n - 1 ) = ( N - 1 ) ) |
|
| 3 | 1 2 | oveqan12d | |- ( ( m = M /\ n = N ) -> ( m ... ( n - 1 ) ) = ( M ... ( N - 1 ) ) ) |
| 4 | df-fzo | |- ..^ = ( m e. ZZ , n e. ZZ |-> ( m ... ( n - 1 ) ) ) |
|
| 5 | ovex | |- ( M ... ( N - 1 ) ) e. _V |
|
| 6 | 3 4 5 | ovmpoa | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 7 | simpl | |- ( ( M e. ZZ /\ N e. ZZ ) -> M e. ZZ ) |
|
| 8 | fzof | |- ..^ : ( ZZ X. ZZ ) --> ~P ZZ |
|
| 9 | 8 | fdmi | |- dom ..^ = ( ZZ X. ZZ ) |
| 10 | 9 | ndmov | |- ( -. ( M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) = (/) ) |
| 11 | 7 10 | nsyl5 | |- ( -. M e. ZZ -> ( M ..^ N ) = (/) ) |
| 12 | simpl | |- ( ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> M e. ZZ ) |
|
| 13 | fzf | |- ... : ( ZZ X. ZZ ) --> ~P ZZ |
|
| 14 | 13 | fdmi | |- dom ... = ( ZZ X. ZZ ) |
| 15 | 14 | ndmov | |- ( -. ( M e. ZZ /\ ( N - 1 ) e. ZZ ) -> ( M ... ( N - 1 ) ) = (/) ) |
| 16 | 12 15 | nsyl5 | |- ( -. M e. ZZ -> ( M ... ( N - 1 ) ) = (/) ) |
| 17 | 11 16 | eqtr4d | |- ( -. M e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 18 | 17 | adantr | |- ( ( -. M e. ZZ /\ N e. ZZ ) -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |
| 19 | 6 18 | pm2.61ian | |- ( N e. ZZ -> ( M ..^ N ) = ( M ... ( N - 1 ) ) ) |