This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Derivative of a power function. (Contributed by Mario Carneiro, 9-Aug-2014) (Revised by Mario Carneiro, 10-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvexp | |- ( N e. NN -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq2 | |- ( n = 1 -> ( x ^ n ) = ( x ^ 1 ) ) |
|
| 2 | 1 | mpteq2dv | |- ( n = 1 -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ 1 ) ) ) |
| 3 | 2 | oveq2d | |- ( n = 1 -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) ) |
| 4 | id | |- ( n = 1 -> n = 1 ) |
|
| 5 | oveq1 | |- ( n = 1 -> ( n - 1 ) = ( 1 - 1 ) ) |
|
| 6 | 5 | oveq2d | |- ( n = 1 -> ( x ^ ( n - 1 ) ) = ( x ^ ( 1 - 1 ) ) ) |
| 7 | 4 6 | oveq12d | |- ( n = 1 -> ( n x. ( x ^ ( n - 1 ) ) ) = ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) |
| 8 | 7 | mpteq2dv | |- ( n = 1 -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) ) |
| 9 | 3 8 | eqeq12d | |- ( n = 1 -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) ) ) |
| 10 | oveq2 | |- ( n = k -> ( x ^ n ) = ( x ^ k ) ) |
|
| 11 | 10 | mpteq2dv | |- ( n = k -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
| 12 | 11 | oveq2d | |- ( n = k -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ k ) ) ) ) |
| 13 | id | |- ( n = k -> n = k ) |
|
| 14 | oveq1 | |- ( n = k -> ( n - 1 ) = ( k - 1 ) ) |
|
| 15 | 14 | oveq2d | |- ( n = k -> ( x ^ ( n - 1 ) ) = ( x ^ ( k - 1 ) ) ) |
| 16 | 13 15 | oveq12d | |- ( n = k -> ( n x. ( x ^ ( n - 1 ) ) ) = ( k x. ( x ^ ( k - 1 ) ) ) ) |
| 17 | 16 | mpteq2dv | |- ( n = k -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
| 18 | 12 17 | eqeq12d | |- ( n = k -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) ) |
| 19 | oveq2 | |- ( n = ( k + 1 ) -> ( x ^ n ) = ( x ^ ( k + 1 ) ) ) |
|
| 20 | 19 | mpteq2dv | |- ( n = ( k + 1 ) -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) |
| 21 | 20 | oveq2d | |- ( n = ( k + 1 ) -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) ) |
| 22 | id | |- ( n = ( k + 1 ) -> n = ( k + 1 ) ) |
|
| 23 | oveq1 | |- ( n = ( k + 1 ) -> ( n - 1 ) = ( ( k + 1 ) - 1 ) ) |
|
| 24 | 23 | oveq2d | |- ( n = ( k + 1 ) -> ( x ^ ( n - 1 ) ) = ( x ^ ( ( k + 1 ) - 1 ) ) ) |
| 25 | 22 24 | oveq12d | |- ( n = ( k + 1 ) -> ( n x. ( x ^ ( n - 1 ) ) ) = ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) |
| 26 | 25 | mpteq2dv | |- ( n = ( k + 1 ) -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) |
| 27 | 21 26 | eqeq12d | |- ( n = ( k + 1 ) -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) ) |
| 28 | oveq2 | |- ( n = N -> ( x ^ n ) = ( x ^ N ) ) |
|
| 29 | 28 | mpteq2dv | |- ( n = N -> ( x e. CC |-> ( x ^ n ) ) = ( x e. CC |-> ( x ^ N ) ) ) |
| 30 | 29 | oveq2d | |- ( n = N -> ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( CC _D ( x e. CC |-> ( x ^ N ) ) ) ) |
| 31 | id | |- ( n = N -> n = N ) |
|
| 32 | oveq1 | |- ( n = N -> ( n - 1 ) = ( N - 1 ) ) |
|
| 33 | 32 | oveq2d | |- ( n = N -> ( x ^ ( n - 1 ) ) = ( x ^ ( N - 1 ) ) ) |
| 34 | 31 33 | oveq12d | |- ( n = N -> ( n x. ( x ^ ( n - 1 ) ) ) = ( N x. ( x ^ ( N - 1 ) ) ) ) |
| 35 | 34 | mpteq2dv | |- ( n = N -> ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |
| 36 | 30 35 | eqeq12d | |- ( n = N -> ( ( CC _D ( x e. CC |-> ( x ^ n ) ) ) = ( x e. CC |-> ( n x. ( x ^ ( n - 1 ) ) ) ) <-> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) ) |
| 37 | exp1 | |- ( x e. CC -> ( x ^ 1 ) = x ) |
|
| 38 | 37 | mpteq2ia | |- ( x e. CC |-> ( x ^ 1 ) ) = ( x e. CC |-> x ) |
| 39 | mptresid | |- ( _I |` CC ) = ( x e. CC |-> x ) |
|
| 40 | 38 39 | eqtr4i | |- ( x e. CC |-> ( x ^ 1 ) ) = ( _I |` CC ) |
| 41 | 40 | oveq2i | |- ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( CC _D ( _I |` CC ) ) |
| 42 | 1m1e0 | |- ( 1 - 1 ) = 0 |
|
| 43 | 42 | oveq2i | |- ( x ^ ( 1 - 1 ) ) = ( x ^ 0 ) |
| 44 | exp0 | |- ( x e. CC -> ( x ^ 0 ) = 1 ) |
|
| 45 | 43 44 | eqtrid | |- ( x e. CC -> ( x ^ ( 1 - 1 ) ) = 1 ) |
| 46 | 45 | oveq2d | |- ( x e. CC -> ( 1 x. ( x ^ ( 1 - 1 ) ) ) = ( 1 x. 1 ) ) |
| 47 | 1t1e1 | |- ( 1 x. 1 ) = 1 |
|
| 48 | 46 47 | eqtrdi | |- ( x e. CC -> ( 1 x. ( x ^ ( 1 - 1 ) ) ) = 1 ) |
| 49 | 48 | mpteq2ia | |- ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( x e. CC |-> 1 ) |
| 50 | fconstmpt | |- ( CC X. { 1 } ) = ( x e. CC |-> 1 ) |
|
| 51 | 49 50 | eqtr4i | |- ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( CC X. { 1 } ) |
| 52 | dvid | |- ( CC _D ( _I |` CC ) ) = ( CC X. { 1 } ) |
|
| 53 | 51 52 | eqtr4i | |- ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) = ( CC _D ( _I |` CC ) ) |
| 54 | 41 53 | eqtr4i | |- ( CC _D ( x e. CC |-> ( x ^ 1 ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ ( 1 - 1 ) ) ) ) |
| 55 | nncn | |- ( k e. NN -> k e. CC ) |
|
| 56 | 55 | adantr | |- ( ( k e. NN /\ x e. CC ) -> k e. CC ) |
| 57 | ax-1cn | |- 1 e. CC |
|
| 58 | pncan | |- ( ( k e. CC /\ 1 e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
|
| 59 | 56 57 58 | sylancl | |- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) - 1 ) = k ) |
| 60 | 59 | oveq2d | |- ( ( k e. NN /\ x e. CC ) -> ( x ^ ( ( k + 1 ) - 1 ) ) = ( x ^ k ) ) |
| 61 | 60 | oveq2d | |- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) = ( ( k + 1 ) x. ( x ^ k ) ) ) |
| 62 | 57 | a1i | |- ( ( k e. NN /\ x e. CC ) -> 1 e. CC ) |
| 63 | id | |- ( x e. CC -> x e. CC ) |
|
| 64 | nnnn0 | |- ( k e. NN -> k e. NN0 ) |
|
| 65 | expcl | |- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ k ) e. CC ) |
|
| 66 | 63 64 65 | syl2anr | |- ( ( k e. NN /\ x e. CC ) -> ( x ^ k ) e. CC ) |
| 67 | 56 62 66 | adddird | |- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ k ) ) = ( ( k x. ( x ^ k ) ) + ( 1 x. ( x ^ k ) ) ) ) |
| 68 | 66 | mullidd | |- ( ( k e. NN /\ x e. CC ) -> ( 1 x. ( x ^ k ) ) = ( x ^ k ) ) |
| 69 | 68 | oveq2d | |- ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ k ) ) + ( 1 x. ( x ^ k ) ) ) = ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) |
| 70 | 61 67 69 | 3eqtrd | |- ( ( k e. NN /\ x e. CC ) -> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) = ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) |
| 71 | 70 | mpteq2dva | |- ( k e. NN -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( x e. CC |-> ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) ) |
| 72 | cnex | |- CC e. _V |
|
| 73 | 72 | a1i | |- ( k e. NN -> CC e. _V ) |
| 74 | 56 66 | mulcld | |- ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ k ) ) e. CC ) |
| 75 | nnm1nn0 | |- ( k e. NN -> ( k - 1 ) e. NN0 ) |
|
| 76 | expcl | |- ( ( x e. CC /\ ( k - 1 ) e. NN0 ) -> ( x ^ ( k - 1 ) ) e. CC ) |
|
| 77 | 63 75 76 | syl2anr | |- ( ( k e. NN /\ x e. CC ) -> ( x ^ ( k - 1 ) ) e. CC ) |
| 78 | 56 77 | mulcld | |- ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ ( k - 1 ) ) ) e. CC ) |
| 79 | simpr | |- ( ( k e. NN /\ x e. CC ) -> x e. CC ) |
|
| 80 | eqidd | |- ( k e. NN -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
|
| 81 | 39 | a1i | |- ( k e. NN -> ( _I |` CC ) = ( x e. CC |-> x ) ) |
| 82 | 73 78 79 80 81 | offval2 | |- ( k e. NN -> ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) ) ) |
| 83 | 56 77 79 | mulassd | |- ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) = ( k x. ( ( x ^ ( k - 1 ) ) x. x ) ) ) |
| 84 | expm1t | |- ( ( x e. CC /\ k e. NN ) -> ( x ^ k ) = ( ( x ^ ( k - 1 ) ) x. x ) ) |
|
| 85 | 84 | ancoms | |- ( ( k e. NN /\ x e. CC ) -> ( x ^ k ) = ( ( x ^ ( k - 1 ) ) x. x ) ) |
| 86 | 85 | oveq2d | |- ( ( k e. NN /\ x e. CC ) -> ( k x. ( x ^ k ) ) = ( k x. ( ( x ^ ( k - 1 ) ) x. x ) ) ) |
| 87 | 83 86 | eqtr4d | |- ( ( k e. NN /\ x e. CC ) -> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) = ( k x. ( x ^ k ) ) ) |
| 88 | 87 | mpteq2dva | |- ( k e. NN -> ( x e. CC |-> ( ( k x. ( x ^ ( k - 1 ) ) ) x. x ) ) = ( x e. CC |-> ( k x. ( x ^ k ) ) ) ) |
| 89 | 82 88 | eqtrd | |- ( k e. NN -> ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( k x. ( x ^ k ) ) ) ) |
| 90 | 52 50 | eqtri | |- ( CC _D ( _I |` CC ) ) = ( x e. CC |-> 1 ) |
| 91 | 90 | a1i | |- ( k e. NN -> ( CC _D ( _I |` CC ) ) = ( x e. CC |-> 1 ) ) |
| 92 | eqidd | |- ( k e. NN -> ( x e. CC |-> ( x ^ k ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
|
| 93 | 73 62 66 91 92 | offval2 | |- ( k e. NN -> ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( 1 x. ( x ^ k ) ) ) ) |
| 94 | 68 | mpteq2dva | |- ( k e. NN -> ( x e. CC |-> ( 1 x. ( x ^ k ) ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
| 95 | 93 94 | eqtrd | |- ( k e. NN -> ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( x ^ k ) ) ) |
| 96 | 73 74 66 89 95 | offval2 | |- ( k e. NN -> ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( x e. CC |-> ( ( k x. ( x ^ k ) ) + ( x ^ k ) ) ) ) |
| 97 | 71 96 | eqtr4d | |- ( k e. NN -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 98 | oveq1 | |- ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) = ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) ) |
|
| 99 | 98 | oveq1d | |- ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 100 | 99 | eqcomd | |- ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( ( ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 101 | 97 100 | sylan9eq | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 102 | cnelprrecn | |- CC e. { RR , CC } |
|
| 103 | 102 | a1i | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> CC e. { RR , CC } ) |
| 104 | 66 | fmpttd | |- ( k e. NN -> ( x e. CC |-> ( x ^ k ) ) : CC --> CC ) |
| 105 | 104 | adantr | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( x ^ k ) ) : CC --> CC ) |
| 106 | f1oi | |- ( _I |` CC ) : CC -1-1-onto-> CC |
|
| 107 | f1of | |- ( ( _I |` CC ) : CC -1-1-onto-> CC -> ( _I |` CC ) : CC --> CC ) |
|
| 108 | 106 107 | mp1i | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( _I |` CC ) : CC --> CC ) |
| 109 | simpr | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
|
| 110 | 109 | dmeqd | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = dom ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) |
| 111 | 78 | fmpttd | |- ( k e. NN -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) : CC --> CC ) |
| 112 | 111 | adantr | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) : CC --> CC ) |
| 113 | 112 | fdmd | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) = CC ) |
| 114 | 110 113 | eqtrd | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = CC ) |
| 115 | 1ex | |- 1 e. _V |
|
| 116 | 115 | fconst | |- ( CC X. { 1 } ) : CC --> { 1 } |
| 117 | 52 | feq1i | |- ( ( CC _D ( _I |` CC ) ) : CC --> { 1 } <-> ( CC X. { 1 } ) : CC --> { 1 } ) |
| 118 | 116 117 | mpbir | |- ( CC _D ( _I |` CC ) ) : CC --> { 1 } |
| 119 | 118 | fdmi | |- dom ( CC _D ( _I |` CC ) ) = CC |
| 120 | 119 | a1i | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> dom ( CC _D ( _I |` CC ) ) = CC ) |
| 121 | 103 105 108 114 120 | dvmulf | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) oF x. ( _I |` CC ) ) oF + ( ( CC _D ( _I |` CC ) ) oF x. ( x e. CC |-> ( x ^ k ) ) ) ) ) |
| 122 | 73 66 79 92 81 | offval2 | |- ( k e. NN -> ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( ( x ^ k ) x. x ) ) ) |
| 123 | expp1 | |- ( ( x e. CC /\ k e. NN0 ) -> ( x ^ ( k + 1 ) ) = ( ( x ^ k ) x. x ) ) |
|
| 124 | 63 64 123 | syl2anr | |- ( ( k e. NN /\ x e. CC ) -> ( x ^ ( k + 1 ) ) = ( ( x ^ k ) x. x ) ) |
| 125 | 124 | mpteq2dva | |- ( k e. NN -> ( x e. CC |-> ( x ^ ( k + 1 ) ) ) = ( x e. CC |-> ( ( x ^ k ) x. x ) ) ) |
| 126 | 122 125 | eqtr4d | |- ( k e. NN -> ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) = ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) |
| 127 | 126 | oveq2d | |- ( k e. NN -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) ) |
| 128 | 127 | adantr | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( ( x e. CC |-> ( x ^ k ) ) oF x. ( _I |` CC ) ) ) = ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) ) |
| 129 | 101 121 128 | 3eqtr2rd | |- ( ( k e. NN /\ ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) |
| 130 | 129 | ex | |- ( k e. NN -> ( ( CC _D ( x e. CC |-> ( x ^ k ) ) ) = ( x e. CC |-> ( k x. ( x ^ ( k - 1 ) ) ) ) -> ( CC _D ( x e. CC |-> ( x ^ ( k + 1 ) ) ) ) = ( x e. CC |-> ( ( k + 1 ) x. ( x ^ ( ( k + 1 ) - 1 ) ) ) ) ) ) |
| 131 | 9 18 27 36 54 130 | nnind | |- ( N e. NN -> ( CC _D ( x e. CC |-> ( x ^ N ) ) ) = ( x e. CC |-> ( N x. ( x ^ ( N - 1 ) ) ) ) ) |