This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for efopn . (Contributed by Mario Carneiro, 23-Apr-2015) (Revised by Mario Carneiro, 8-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | efopnlem1 | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` A ) ) < _pi ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) |
|
| 2 | rpxr | |- ( R e. RR+ -> R e. RR* ) |
|
| 3 | 2 | ad2antrr | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> R e. RR* ) |
| 4 | eqid | |- ( abs o. - ) = ( abs o. - ) |
|
| 5 | 4 | cnbl0 | |- ( R e. RR* -> ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` ( abs o. - ) ) R ) ) |
| 6 | 3 5 | syl | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( `' abs " ( 0 [,) R ) ) = ( 0 ( ball ` ( abs o. - ) ) R ) ) |
| 7 | 1 6 | eleqtrrd | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> A e. ( `' abs " ( 0 [,) R ) ) ) |
| 8 | absf | |- abs : CC --> RR |
|
| 9 | ffn | |- ( abs : CC --> RR -> abs Fn CC ) |
|
| 10 | elpreima | |- ( abs Fn CC -> ( A e. ( `' abs " ( 0 [,) R ) ) <-> ( A e. CC /\ ( abs ` A ) e. ( 0 [,) R ) ) ) ) |
|
| 11 | 8 9 10 | mp2b | |- ( A e. ( `' abs " ( 0 [,) R ) ) <-> ( A e. CC /\ ( abs ` A ) e. ( 0 [,) R ) ) ) |
| 12 | 11 | simplbi | |- ( A e. ( `' abs " ( 0 [,) R ) ) -> A e. CC ) |
| 13 | 7 12 | syl | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> A e. CC ) |
| 14 | 13 | imcld | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` A ) e. RR ) |
| 15 | 14 | recnd | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( Im ` A ) e. CC ) |
| 16 | 15 | abscld | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` A ) ) e. RR ) |
| 17 | rpre | |- ( R e. RR+ -> R e. RR ) |
|
| 18 | 17 | ad2antrr | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> R e. RR ) |
| 19 | pire | |- _pi e. RR |
|
| 20 | 19 | a1i | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> _pi e. RR ) |
| 21 | 13 | abscld | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` A ) e. RR ) |
| 22 | absimle | |- ( A e. CC -> ( abs ` ( Im ` A ) ) <_ ( abs ` A ) ) |
|
| 23 | 13 22 | syl | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` A ) ) <_ ( abs ` A ) ) |
| 24 | 11 | simprbi | |- ( A e. ( `' abs " ( 0 [,) R ) ) -> ( abs ` A ) e. ( 0 [,) R ) ) |
| 25 | 7 24 | syl | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` A ) e. ( 0 [,) R ) ) |
| 26 | 0re | |- 0 e. RR |
|
| 27 | elico2 | |- ( ( 0 e. RR /\ R e. RR* ) -> ( ( abs ` A ) e. ( 0 [,) R ) <-> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) /\ ( abs ` A ) < R ) ) ) |
|
| 28 | 26 3 27 | sylancr | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( ( abs ` A ) e. ( 0 [,) R ) <-> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) /\ ( abs ` A ) < R ) ) ) |
| 29 | 25 28 | mpbid | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( ( abs ` A ) e. RR /\ 0 <_ ( abs ` A ) /\ ( abs ` A ) < R ) ) |
| 30 | 29 | simp3d | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` A ) < R ) |
| 31 | 16 21 18 23 30 | lelttrd | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` A ) ) < R ) |
| 32 | simplr | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> R < _pi ) |
|
| 33 | 16 18 20 31 32 | lttrd | |- ( ( ( R e. RR+ /\ R < _pi ) /\ A e. ( 0 ( ball ` ( abs o. - ) ) R ) ) -> ( abs ` ( Im ` A ) ) < _pi ) |