This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The derivative of the real logarithm function. (Contributed by Mario Carneiro, 24-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dvrelog | |- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrelog | |- ( log |` RR+ ) = `' ( exp |` RR ) |
|
| 2 | 1 | oveq2i | |- ( RR _D ( log |` RR+ ) ) = ( RR _D `' ( exp |` RR ) ) |
| 3 | reeff1o | |- ( exp |` RR ) : RR -1-1-onto-> RR+ |
|
| 4 | f1of | |- ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR --> RR+ ) |
|
| 5 | 3 4 | ax-mp | |- ( exp |` RR ) : RR --> RR+ |
| 6 | rpssre | |- RR+ C_ RR |
|
| 7 | fss | |- ( ( ( exp |` RR ) : RR --> RR+ /\ RR+ C_ RR ) -> ( exp |` RR ) : RR --> RR ) |
|
| 8 | 5 6 7 | mp2an | |- ( exp |` RR ) : RR --> RR |
| 9 | ax-resscn | |- RR C_ CC |
|
| 10 | efcn | |- exp e. ( CC -cn-> CC ) |
|
| 11 | rescncf | |- ( RR C_ CC -> ( exp e. ( CC -cn-> CC ) -> ( exp |` RR ) e. ( RR -cn-> CC ) ) ) |
|
| 12 | 9 10 11 | mp2 | |- ( exp |` RR ) e. ( RR -cn-> CC ) |
| 13 | cncfcdm | |- ( ( RR C_ CC /\ ( exp |` RR ) e. ( RR -cn-> CC ) ) -> ( ( exp |` RR ) e. ( RR -cn-> RR ) <-> ( exp |` RR ) : RR --> RR ) ) |
|
| 14 | 9 12 13 | mp2an | |- ( ( exp |` RR ) e. ( RR -cn-> RR ) <-> ( exp |` RR ) : RR --> RR ) |
| 15 | 8 14 | mpbir | |- ( exp |` RR ) e. ( RR -cn-> RR ) |
| 16 | 15 | a1i | |- ( T. -> ( exp |` RR ) e. ( RR -cn-> RR ) ) |
| 17 | reelprrecn | |- RR e. { RR , CC } |
|
| 18 | eff | |- exp : CC --> CC |
|
| 19 | ssid | |- CC C_ CC |
|
| 20 | dvef | |- ( CC _D exp ) = exp |
|
| 21 | 20 | dmeqi | |- dom ( CC _D exp ) = dom exp |
| 22 | 18 | fdmi | |- dom exp = CC |
| 23 | 21 22 | eqtri | |- dom ( CC _D exp ) = CC |
| 24 | 9 23 | sseqtrri | |- RR C_ dom ( CC _D exp ) |
| 25 | dvres3 | |- ( ( ( RR e. { RR , CC } /\ exp : CC --> CC ) /\ ( CC C_ CC /\ RR C_ dom ( CC _D exp ) ) ) -> ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) ) |
|
| 26 | 17 18 19 24 25 | mp4an | |- ( RR _D ( exp |` RR ) ) = ( ( CC _D exp ) |` RR ) |
| 27 | 20 | reseq1i | |- ( ( CC _D exp ) |` RR ) = ( exp |` RR ) |
| 28 | 26 27 | eqtri | |- ( RR _D ( exp |` RR ) ) = ( exp |` RR ) |
| 29 | 28 | dmeqi | |- dom ( RR _D ( exp |` RR ) ) = dom ( exp |` RR ) |
| 30 | 5 | fdmi | |- dom ( exp |` RR ) = RR |
| 31 | 29 30 | eqtri | |- dom ( RR _D ( exp |` RR ) ) = RR |
| 32 | 31 | a1i | |- ( T. -> dom ( RR _D ( exp |` RR ) ) = RR ) |
| 33 | 0nrp | |- -. 0 e. RR+ |
|
| 34 | 28 | rneqi | |- ran ( RR _D ( exp |` RR ) ) = ran ( exp |` RR ) |
| 35 | f1ofo | |- ( ( exp |` RR ) : RR -1-1-onto-> RR+ -> ( exp |` RR ) : RR -onto-> RR+ ) |
|
| 36 | forn | |- ( ( exp |` RR ) : RR -onto-> RR+ -> ran ( exp |` RR ) = RR+ ) |
|
| 37 | 3 35 36 | mp2b | |- ran ( exp |` RR ) = RR+ |
| 38 | 34 37 | eqtri | |- ran ( RR _D ( exp |` RR ) ) = RR+ |
| 39 | 38 | eleq2i | |- ( 0 e. ran ( RR _D ( exp |` RR ) ) <-> 0 e. RR+ ) |
| 40 | 33 39 | mtbir | |- -. 0 e. ran ( RR _D ( exp |` RR ) ) |
| 41 | 40 | a1i | |- ( T. -> -. 0 e. ran ( RR _D ( exp |` RR ) ) ) |
| 42 | 3 | a1i | |- ( T. -> ( exp |` RR ) : RR -1-1-onto-> RR+ ) |
| 43 | 16 32 41 42 | dvcnvre | |- ( T. -> ( RR _D `' ( exp |` RR ) ) = ( x e. RR+ |-> ( 1 / ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) ) ) ) |
| 44 | 43 | mptru | |- ( RR _D `' ( exp |` RR ) ) = ( x e. RR+ |-> ( 1 / ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) ) ) |
| 45 | 28 | fveq1i | |- ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) = ( ( exp |` RR ) ` ( `' ( exp |` RR ) ` x ) ) |
| 46 | f1ocnvfv2 | |- ( ( ( exp |` RR ) : RR -1-1-onto-> RR+ /\ x e. RR+ ) -> ( ( exp |` RR ) ` ( `' ( exp |` RR ) ` x ) ) = x ) |
|
| 47 | 3 46 | mpan | |- ( x e. RR+ -> ( ( exp |` RR ) ` ( `' ( exp |` RR ) ` x ) ) = x ) |
| 48 | 45 47 | eqtrid | |- ( x e. RR+ -> ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) = x ) |
| 49 | 48 | oveq2d | |- ( x e. RR+ -> ( 1 / ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) ) = ( 1 / x ) ) |
| 50 | 49 | mpteq2ia | |- ( x e. RR+ |-> ( 1 / ( ( RR _D ( exp |` RR ) ) ` ( `' ( exp |` RR ) ` x ) ) ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
| 51 | 44 50 | eqtri | |- ( RR _D `' ( exp |` RR ) ) = ( x e. RR+ |-> ( 1 / x ) ) |
| 52 | 2 51 | eqtri | |- ( RR _D ( log |` RR+ ) ) = ( x e. RR+ |-> ( 1 / x ) ) |