This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Function-builder for derivative, division rule for constant divisor. (Contributed by Mario Carneiro, 18-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
||
| dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
||
| dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
||
| dvmptcmul.c | |- ( ph -> C e. CC ) |
||
| dvmptdivc.0 | |- ( ph -> C =/= 0 ) |
||
| Assertion | dvmptdivc | |- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( x e. X |-> ( B / C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvmptadd.s | |- ( ph -> S e. { RR , CC } ) |
|
| 2 | dvmptadd.a | |- ( ( ph /\ x e. X ) -> A e. CC ) |
|
| 3 | dvmptadd.b | |- ( ( ph /\ x e. X ) -> B e. V ) |
|
| 4 | dvmptadd.da | |- ( ph -> ( S _D ( x e. X |-> A ) ) = ( x e. X |-> B ) ) |
|
| 5 | dvmptcmul.c | |- ( ph -> C e. CC ) |
|
| 6 | dvmptdivc.0 | |- ( ph -> C =/= 0 ) |
|
| 7 | 5 6 | reccld | |- ( ph -> ( 1 / C ) e. CC ) |
| 8 | 1 2 3 4 7 | dvmptcmul | |- ( ph -> ( S _D ( x e. X |-> ( ( 1 / C ) x. A ) ) ) = ( x e. X |-> ( ( 1 / C ) x. B ) ) ) |
| 9 | 5 | adantr | |- ( ( ph /\ x e. X ) -> C e. CC ) |
| 10 | 6 | adantr | |- ( ( ph /\ x e. X ) -> C =/= 0 ) |
| 11 | 2 9 10 | divrec2d | |- ( ( ph /\ x e. X ) -> ( A / C ) = ( ( 1 / C ) x. A ) ) |
| 12 | 11 | mpteq2dva | |- ( ph -> ( x e. X |-> ( A / C ) ) = ( x e. X |-> ( ( 1 / C ) x. A ) ) ) |
| 13 | 12 | oveq2d | |- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( S _D ( x e. X |-> ( ( 1 / C ) x. A ) ) ) ) |
| 14 | 1 2 3 4 | dvmptcl | |- ( ( ph /\ x e. X ) -> B e. CC ) |
| 15 | 14 9 10 | divrec2d | |- ( ( ph /\ x e. X ) -> ( B / C ) = ( ( 1 / C ) x. B ) ) |
| 16 | 15 | mpteq2dva | |- ( ph -> ( x e. X |-> ( B / C ) ) = ( x e. X |-> ( ( 1 / C ) x. B ) ) ) |
| 17 | 8 13 16 | 3eqtr4d | |- ( ph -> ( S _D ( x e. X |-> ( A / C ) ) ) = ( x e. X |-> ( B / C ) ) ) |