This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| Assertion | abelthlem1 | |- ( ph -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 4 | eqid | |- ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) = ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) |
|
| 5 | eqid | |- sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) = sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) |
|
| 6 | 1cnd | |- ( ph -> 1 e. CC ) |
|
| 7 | 1 | feqmptd | |- ( ph -> A = ( n e. NN0 |-> ( A ` n ) ) ) |
| 8 | 1 | ffvelcdmda | |- ( ( ph /\ n e. NN0 ) -> ( A ` n ) e. CC ) |
| 9 | 8 | mulridd | |- ( ( ph /\ n e. NN0 ) -> ( ( A ` n ) x. 1 ) = ( A ` n ) ) |
| 10 | 9 | mpteq2dva | |- ( ph -> ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) = ( n e. NN0 |-> ( A ` n ) ) ) |
| 11 | 7 10 | eqtr4d | |- ( ph -> A = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
| 12 | ax-1cn | |- 1 e. CC |
|
| 13 | oveq1 | |- ( z = 1 -> ( z ^ n ) = ( 1 ^ n ) ) |
|
| 14 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 15 | 1exp | |- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
|
| 16 | 14 15 | syl | |- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
| 17 | 13 16 | sylan9eq | |- ( ( z = 1 /\ n e. NN0 ) -> ( z ^ n ) = 1 ) |
| 18 | 17 | oveq2d | |- ( ( z = 1 /\ n e. NN0 ) -> ( ( A ` n ) x. ( z ^ n ) ) = ( ( A ` n ) x. 1 ) ) |
| 19 | 18 | mpteq2dva | |- ( z = 1 -> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
| 20 | nn0ex | |- NN0 e. _V |
|
| 21 | 20 | mptex | |- ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) e. _V |
| 22 | 19 4 21 | fvmpt | |- ( 1 e. CC -> ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) ) |
| 23 | 12 22 | ax-mp | |- ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) = ( n e. NN0 |-> ( ( A ` n ) x. 1 ) ) |
| 24 | 11 23 | eqtr4di | |- ( ph -> A = ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) ) |
| 25 | 24 | seqeq3d | |- ( ph -> seq 0 ( + , A ) = seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) ) ) |
| 26 | 25 2 | eqeltrrd | |- ( ph -> seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` 1 ) ) e. dom ~~> ) |
| 27 | 4 1 5 6 26 | radcnvle | |- ( ph -> ( abs ` 1 ) <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |
| 28 | 3 27 | eqbrtrrid | |- ( ph -> 1 <_ sup ( { r e. RR | seq 0 ( + , ( ( z e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( z ^ n ) ) ) ) ` r ) ) e. dom ~~> } , RR* , < ) ) |