This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed set is closed in the subspace topology. (Contributed by Jeff Madsen, 2-Sep-2009)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | restcldi.1 | |- X = U. J |
|
| Assertion | restcldi | |- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> B e. ( Clsd ` ( J |`t A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | restcldi.1 | |- X = U. J |
|
| 2 | simp2 | |- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> B e. ( Clsd ` J ) ) |
|
| 3 | dfss | |- ( B C_ A <-> B = ( B i^i A ) ) |
|
| 4 | 3 | biimpi | |- ( B C_ A -> B = ( B i^i A ) ) |
| 5 | 4 | 3ad2ant3 | |- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> B = ( B i^i A ) ) |
| 6 | ineq1 | |- ( v = B -> ( v i^i A ) = ( B i^i A ) ) |
|
| 7 | 6 | rspceeqv | |- ( ( B e. ( Clsd ` J ) /\ B = ( B i^i A ) ) -> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) |
| 8 | 2 5 7 | syl2anc | |- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) |
| 9 | cldrcl | |- ( B e. ( Clsd ` J ) -> J e. Top ) |
|
| 10 | 9 | 3ad2ant2 | |- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> J e. Top ) |
| 11 | simp1 | |- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> A C_ X ) |
|
| 12 | 1 | restcld | |- ( ( J e. Top /\ A C_ X ) -> ( B e. ( Clsd ` ( J |`t A ) ) <-> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) ) |
| 13 | 10 11 12 | syl2anc | |- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> ( B e. ( Clsd ` ( J |`t A ) ) <-> E. v e. ( Clsd ` J ) B = ( v i^i A ) ) ) |
| 14 | 8 13 | mpbird | |- ( ( A C_ X /\ B e. ( Clsd ` J ) /\ B C_ A ) -> B e. ( Clsd ` ( J |`t A ) ) ) |