This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equivalence of being a subspace of a subspace and being a subspace of the original. (Contributed by Jeff Hankins, 11-Jul-2009) (Proof shortened by Mario Carneiro, 1-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restabs | |- ( ( J e. V /\ S C_ T /\ T e. W ) -> ( ( J |`t T ) |`t S ) = ( J |`t S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 | |- ( ( J e. V /\ S C_ T /\ T e. W ) -> J e. V ) |
|
| 2 | simp3 | |- ( ( J e. V /\ S C_ T /\ T e. W ) -> T e. W ) |
|
| 3 | ssexg | |- ( ( S C_ T /\ T e. W ) -> S e. _V ) |
|
| 4 | 3 | 3adant1 | |- ( ( J e. V /\ S C_ T /\ T e. W ) -> S e. _V ) |
| 5 | restco | |- ( ( J e. V /\ T e. W /\ S e. _V ) -> ( ( J |`t T ) |`t S ) = ( J |`t ( T i^i S ) ) ) |
|
| 6 | 1 2 4 5 | syl3anc | |- ( ( J e. V /\ S C_ T /\ T e. W ) -> ( ( J |`t T ) |`t S ) = ( J |`t ( T i^i S ) ) ) |
| 7 | simp2 | |- ( ( J e. V /\ S C_ T /\ T e. W ) -> S C_ T ) |
|
| 8 | sseqin2 | |- ( S C_ T <-> ( T i^i S ) = S ) |
|
| 9 | 7 8 | sylib | |- ( ( J e. V /\ S C_ T /\ T e. W ) -> ( T i^i S ) = S ) |
| 10 | 9 | oveq2d | |- ( ( J e. V /\ S C_ T /\ T e. W ) -> ( J |`t ( T i^i S ) ) = ( J |`t S ) ) |
| 11 | 6 10 | eqtrd | |- ( ( J e. V /\ S C_ T /\ T e. W ) -> ( ( J |`t T ) |`t S ) = ( J |`t S ) ) |