This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Relate complex function continuity to topological continuity. (Contributed by Mario Carneiro, 17-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cncfcn.2 | |- J = ( TopOpen ` CCfld ) |
|
| cncfcn.3 | |- K = ( J |`t A ) |
||
| cncfcn.4 | |- L = ( J |`t B ) |
||
| Assertion | cncfcn | |- ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( K Cn L ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncfcn.2 | |- J = ( TopOpen ` CCfld ) |
|
| 2 | cncfcn.3 | |- K = ( J |`t A ) |
|
| 3 | cncfcn.4 | |- L = ( J |`t B ) |
|
| 4 | eqid | |- ( ( abs o. - ) |` ( A X. A ) ) = ( ( abs o. - ) |` ( A X. A ) ) |
|
| 5 | eqid | |- ( ( abs o. - ) |` ( B X. B ) ) = ( ( abs o. - ) |` ( B X. B ) ) |
|
| 6 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) |
|
| 7 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) |
|
| 8 | 4 5 6 7 | cncfmet | |- ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) Cn ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) ) |
| 9 | cnxmet | |- ( abs o. - ) e. ( *Met ` CC ) |
|
| 10 | simpl | |- ( ( A C_ CC /\ B C_ CC ) -> A C_ CC ) |
|
| 11 | 1 | cnfldtopn | |- J = ( MetOpen ` ( abs o. - ) ) |
| 12 | 4 11 6 | metrest | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ A C_ CC ) -> ( J |`t A ) = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) ) |
| 13 | 9 10 12 | sylancr | |- ( ( A C_ CC /\ B C_ CC ) -> ( J |`t A ) = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) ) |
| 14 | 2 13 | eqtrid | |- ( ( A C_ CC /\ B C_ CC ) -> K = ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) ) |
| 15 | simpr | |- ( ( A C_ CC /\ B C_ CC ) -> B C_ CC ) |
|
| 16 | 5 11 7 | metrest | |- ( ( ( abs o. - ) e. ( *Met ` CC ) /\ B C_ CC ) -> ( J |`t B ) = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) |
| 17 | 9 15 16 | sylancr | |- ( ( A C_ CC /\ B C_ CC ) -> ( J |`t B ) = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) |
| 18 | 3 17 | eqtrid | |- ( ( A C_ CC /\ B C_ CC ) -> L = ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) |
| 19 | 14 18 | oveq12d | |- ( ( A C_ CC /\ B C_ CC ) -> ( K Cn L ) = ( ( MetOpen ` ( ( abs o. - ) |` ( A X. A ) ) ) Cn ( MetOpen ` ( ( abs o. - ) |` ( B X. B ) ) ) ) ) |
| 20 | 8 19 | eqtr4d | |- ( ( A C_ CC /\ B C_ CC ) -> ( A -cn-> B ) = ( K Cn L ) ) |