This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for abelth . By adjusting the constant term, we can assume that the entire series converges to 0 . (Contributed by Mario Carneiro, 1-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
||
| abelth.3 | |- ( ph -> M e. RR ) |
||
| abelth.4 | |- ( ph -> 0 <_ M ) |
||
| abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
||
| abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
||
| Assertion | abelthlem9 | |- ( ( ph /\ R e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abelth.1 | |- ( ph -> A : NN0 --> CC ) |
|
| 2 | abelth.2 | |- ( ph -> seq 0 ( + , A ) e. dom ~~> ) |
|
| 3 | abelth.3 | |- ( ph -> M e. RR ) |
|
| 4 | abelth.4 | |- ( ph -> 0 <_ M ) |
|
| 5 | abelth.5 | |- S = { z e. CC | ( abs ` ( 1 - z ) ) <_ ( M x. ( 1 - ( abs ` z ) ) ) } |
|
| 6 | abelth.6 | |- F = ( x e. S |-> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) ) |
|
| 7 | 0nn0 | |- 0 e. NN0 |
|
| 8 | 7 | a1i | |- ( k e. NN0 -> 0 e. NN0 ) |
| 9 | ffvelcdm | |- ( ( A : NN0 --> CC /\ 0 e. NN0 ) -> ( A ` 0 ) e. CC ) |
|
| 10 | 1 8 9 | syl2an | |- ( ( ph /\ k e. NN0 ) -> ( A ` 0 ) e. CC ) |
| 11 | nn0uz | |- NN0 = ( ZZ>= ` 0 ) |
|
| 12 | 0zd | |- ( ph -> 0 e. ZZ ) |
|
| 13 | eqidd | |- ( ( ph /\ m e. NN0 ) -> ( A ` m ) = ( A ` m ) ) |
|
| 14 | 1 | ffvelcdmda | |- ( ( ph /\ m e. NN0 ) -> ( A ` m ) e. CC ) |
| 15 | 11 12 13 14 2 | isumcl | |- ( ph -> sum_ m e. NN0 ( A ` m ) e. CC ) |
| 16 | 15 | adantr | |- ( ( ph /\ k e. NN0 ) -> sum_ m e. NN0 ( A ` m ) e. CC ) |
| 17 | 10 16 | subcld | |- ( ( ph /\ k e. NN0 ) -> ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. CC ) |
| 18 | 1 | ffvelcdmda | |- ( ( ph /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 19 | 17 18 | ifcld | |- ( ( ph /\ k e. NN0 ) -> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) e. CC ) |
| 20 | 19 | fmpttd | |- ( ph -> ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) : NN0 --> CC ) |
| 21 | 7 | a1i | |- ( ph -> 0 e. NN0 ) |
| 22 | 20 | ffvelcdmda | |- ( ( ph /\ i e. NN0 ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) e. CC ) |
| 23 | 1e0p1 | |- 1 = ( 0 + 1 ) |
|
| 24 | 1z | |- 1 e. ZZ |
|
| 25 | 23 24 | eqeltrri | |- ( 0 + 1 ) e. ZZ |
| 26 | 25 | a1i | |- ( ph -> ( 0 + 1 ) e. ZZ ) |
| 27 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 28 | 23 | fveq2i | |- ( ZZ>= ` 1 ) = ( ZZ>= ` ( 0 + 1 ) ) |
| 29 | 27 28 | eqtri | |- NN = ( ZZ>= ` ( 0 + 1 ) ) |
| 30 | 29 | eleq2i | |- ( i e. NN <-> i e. ( ZZ>= ` ( 0 + 1 ) ) ) |
| 31 | nnnn0 | |- ( i e. NN -> i e. NN0 ) |
|
| 32 | 31 | adantl | |- ( ( ph /\ i e. NN ) -> i e. NN0 ) |
| 33 | eqeq1 | |- ( k = i -> ( k = 0 <-> i = 0 ) ) |
|
| 34 | fveq2 | |- ( k = i -> ( A ` k ) = ( A ` i ) ) |
|
| 35 | 33 34 | ifbieq2d | |- ( k = i -> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 36 | eqid | |- ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) = ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) |
|
| 37 | ovex | |- ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. _V |
|
| 38 | fvex | |- ( A ` i ) e. _V |
|
| 39 | 37 38 | ifex | |- if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) e. _V |
| 40 | 35 36 39 | fvmpt | |- ( i e. NN0 -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 41 | 32 40 | syl | |- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 42 | nnne0 | |- ( i e. NN -> i =/= 0 ) |
|
| 43 | 42 | adantl | |- ( ( ph /\ i e. NN ) -> i =/= 0 ) |
| 44 | 43 | neneqd | |- ( ( ph /\ i e. NN ) -> -. i = 0 ) |
| 45 | 44 | iffalsed | |- ( ( ph /\ i e. NN ) -> if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) = ( A ` i ) ) |
| 46 | 41 45 | eqtrd | |- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = ( A ` i ) ) |
| 47 | 30 46 | sylan2br | |- ( ( ph /\ i e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = ( A ` i ) ) |
| 48 | 26 47 | seqfeq | |- ( ph -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) = seq ( 0 + 1 ) ( + , A ) ) |
| 49 | 11 12 13 14 2 | isumclim2 | |- ( ph -> seq 0 ( + , A ) ~~> sum_ m e. NN0 ( A ` m ) ) |
| 50 | 11 21 18 49 | clim2ser | |- ( ph -> seq ( 0 + 1 ) ( + , A ) ~~> ( sum_ m e. NN0 ( A ` m ) - ( seq 0 ( + , A ) ` 0 ) ) ) |
| 51 | 0z | |- 0 e. ZZ |
|
| 52 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( + , A ) ` 0 ) = ( A ` 0 ) ) |
|
| 53 | 51 52 | ax-mp | |- ( seq 0 ( + , A ) ` 0 ) = ( A ` 0 ) |
| 54 | 53 | oveq2i | |- ( sum_ m e. NN0 ( A ` m ) - ( seq 0 ( + , A ) ` 0 ) ) = ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) |
| 55 | 50 54 | breqtrdi | |- ( ph -> seq ( 0 + 1 ) ( + , A ) ~~> ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) ) |
| 56 | 48 55 | eqbrtrd | |- ( ph -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) ) |
| 57 | 11 21 22 56 | clim2ser2 | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) ) ) |
| 58 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` 0 ) ) |
|
| 59 | 51 58 | ax-mp | |- ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` 0 ) |
| 60 | iftrue | |- ( k = 0 -> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
|
| 61 | 60 36 37 | fvmpt | |- ( 0 e. NN0 -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` 0 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 62 | 7 61 | ax-mp | |- ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` 0 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) |
| 63 | 59 62 | eqtri | |- ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) |
| 64 | 63 | oveq2i | |- ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) ) = ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 65 | 1 7 9 | sylancl | |- ( ph -> ( A ` 0 ) e. CC ) |
| 66 | npncan2 | |- ( ( sum_ m e. NN0 ( A ` m ) e. CC /\ ( A ` 0 ) e. CC ) -> ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) = 0 ) |
|
| 67 | 15 65 66 | syl2anc | |- ( ph -> ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) = 0 ) |
| 68 | 64 67 | eqtrid | |- ( ph -> ( ( sum_ m e. NN0 ( A ` m ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ` 0 ) ) = 0 ) |
| 69 | 57 68 | breqtrd | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> 0 ) |
| 70 | seqex | |- seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) e. _V |
|
| 71 | c0ex | |- 0 e. _V |
|
| 72 | 70 71 | breldm | |- ( seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> 0 -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) e. dom ~~> ) |
| 73 | 69 72 | syl | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) e. dom ~~> ) |
| 74 | eqid | |- ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) = ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) |
|
| 75 | 20 73 3 4 5 74 69 | abelthlem8 | |- ( ( ph /\ R e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) ) |
| 76 | 1 2 3 4 5 | abelthlem2 | |- ( ph -> ( 1 e. S /\ ( S \ { 1 } ) C_ ( 0 ( ball ` ( abs o. - ) ) 1 ) ) ) |
| 77 | 76 | simpld | |- ( ph -> 1 e. S ) |
| 78 | 77 | adantr | |- ( ( ph /\ y e. S ) -> 1 e. S ) |
| 79 | 40 | adantl | |- ( ( x = 1 /\ i e. NN0 ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 80 | oveq1 | |- ( x = 1 -> ( x ^ i ) = ( 1 ^ i ) ) |
|
| 81 | nn0z | |- ( i e. NN0 -> i e. ZZ ) |
|
| 82 | 1exp | |- ( i e. ZZ -> ( 1 ^ i ) = 1 ) |
|
| 83 | 81 82 | syl | |- ( i e. NN0 -> ( 1 ^ i ) = 1 ) |
| 84 | 80 83 | sylan9eq | |- ( ( x = 1 /\ i e. NN0 ) -> ( x ^ i ) = 1 ) |
| 85 | 79 84 | oveq12d | |- ( ( x = 1 /\ i e. NN0 ) -> ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 86 | 85 | sumeq2dv | |- ( x = 1 -> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 87 | sumex | |- sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) e. _V |
|
| 88 | 86 74 87 | fvmpt | |- ( 1 e. S -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 89 | 78 88 | syl | |- ( ( ph /\ y e. S ) -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 90 | 0zd | |- ( ( ph /\ y e. S ) -> 0 e. ZZ ) |
|
| 91 | 40 | adantl | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 92 | 65 15 | subcld | |- ( ph -> ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. CC ) |
| 93 | 92 | ad2antrr | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. CC ) |
| 94 | 1 | ffvelcdmda | |- ( ( ph /\ i e. NN0 ) -> ( A ` i ) e. CC ) |
| 95 | 94 | adantlr | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( A ` i ) e. CC ) |
| 96 | 93 95 | ifcld | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) e. CC ) |
| 97 | 96 | mulridd | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) = if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) ) |
| 98 | 91 97 | eqtr4d | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) ) |
| 99 | 97 96 | eqeltrd | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) e. CC ) |
| 100 | oveq1 | |- ( x = 1 -> ( x ^ n ) = ( 1 ^ n ) ) |
|
| 101 | nn0z | |- ( n e. NN0 -> n e. ZZ ) |
|
| 102 | 1exp | |- ( n e. ZZ -> ( 1 ^ n ) = 1 ) |
|
| 103 | 101 102 | syl | |- ( n e. NN0 -> ( 1 ^ n ) = 1 ) |
| 104 | 100 103 | sylan9eq | |- ( ( x = 1 /\ n e. NN0 ) -> ( x ^ n ) = 1 ) |
| 105 | 104 | oveq2d | |- ( ( x = 1 /\ n e. NN0 ) -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` n ) x. 1 ) ) |
| 106 | 105 | sumeq2dv | |- ( x = 1 -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ n e. NN0 ( ( A ` n ) x. 1 ) ) |
| 107 | fveq2 | |- ( n = m -> ( A ` n ) = ( A ` m ) ) |
|
| 108 | 107 | oveq1d | |- ( n = m -> ( ( A ` n ) x. 1 ) = ( ( A ` m ) x. 1 ) ) |
| 109 | 108 | cbvsumv | |- sum_ n e. NN0 ( ( A ` n ) x. 1 ) = sum_ m e. NN0 ( ( A ` m ) x. 1 ) |
| 110 | 106 109 | eqtrdi | |- ( x = 1 -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ m e. NN0 ( ( A ` m ) x. 1 ) ) |
| 111 | sumex | |- sum_ m e. NN0 ( ( A ` m ) x. 1 ) e. _V |
|
| 112 | 110 6 111 | fvmpt | |- ( 1 e. S -> ( F ` 1 ) = sum_ m e. NN0 ( ( A ` m ) x. 1 ) ) |
| 113 | 77 112 | syl | |- ( ph -> ( F ` 1 ) = sum_ m e. NN0 ( ( A ` m ) x. 1 ) ) |
| 114 | 14 | mulridd | |- ( ( ph /\ m e. NN0 ) -> ( ( A ` m ) x. 1 ) = ( A ` m ) ) |
| 115 | 114 | sumeq2dv | |- ( ph -> sum_ m e. NN0 ( ( A ` m ) x. 1 ) = sum_ m e. NN0 ( A ` m ) ) |
| 116 | 113 115 | eqtrd | |- ( ph -> ( F ` 1 ) = sum_ m e. NN0 ( A ` m ) ) |
| 117 | 116 | oveq1d | |- ( ph -> ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) = ( sum_ m e. NN0 ( A ` m ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 118 | 15 | subidd | |- ( ph -> ( sum_ m e. NN0 ( A ` m ) - sum_ m e. NN0 ( A ` m ) ) = 0 ) |
| 119 | 117 118 | eqtrd | |- ( ph -> ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) = 0 ) |
| 120 | 69 119 | breqtrrd | |- ( ph -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 121 | 120 | adantr | |- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ) ~~> ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 122 | 11 90 98 99 121 | isumclim | |- ( ( ph /\ y e. S ) -> sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. 1 ) = ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 123 | 89 122 | eqtrd | |- ( ( ph /\ y e. S ) -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) = ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 124 | oveq1 | |- ( x = y -> ( x ^ i ) = ( y ^ i ) ) |
|
| 125 | 40 124 | oveqan12rd | |- ( ( x = y /\ i e. NN0 ) -> ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 126 | 125 | sumeq2dv | |- ( x = y -> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 127 | sumex | |- sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) e. _V |
|
| 128 | 126 74 127 | fvmpt | |- ( y e. S -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 129 | 128 | adantl | |- ( ( ph /\ y e. S ) -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) = sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 130 | oveq2 | |- ( k = i -> ( y ^ k ) = ( y ^ i ) ) |
|
| 131 | 35 130 | oveq12d | |- ( k = i -> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 132 | eqid | |- ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) = ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) |
|
| 133 | ovex | |- ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) e. _V |
|
| 134 | 131 132 133 | fvmpt | |- ( i e. NN0 -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 135 | 134 | adantl | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 136 | 5 | ssrab3 | |- S C_ CC |
| 137 | 136 | a1i | |- ( ph -> S C_ CC ) |
| 138 | 137 | sselda | |- ( ( ph /\ y e. S ) -> y e. CC ) |
| 139 | expcl | |- ( ( y e. CC /\ i e. NN0 ) -> ( y ^ i ) e. CC ) |
|
| 140 | 138 139 | sylan | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( y ^ i ) e. CC ) |
| 141 | 96 140 | mulcld | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) e. CC ) |
| 142 | 7 | a1i | |- ( ( ph /\ y e. S ) -> 0 e. NN0 ) |
| 143 | 19 | adantlr | |- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) e. CC ) |
| 144 | expcl | |- ( ( y e. CC /\ k e. NN0 ) -> ( y ^ k ) e. CC ) |
|
| 145 | 138 144 | sylan | |- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> ( y ^ k ) e. CC ) |
| 146 | 143 145 | mulcld | |- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) e. CC ) |
| 147 | 146 | fmpttd | |- ( ( ph /\ y e. S ) -> ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) : NN0 --> CC ) |
| 148 | 147 | ffvelcdmda | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) e. CC ) |
| 149 | 45 | oveq1d | |- ( ( ph /\ i e. NN ) -> ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 150 | 32 134 | syl | |- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) ) |
| 151 | 34 130 | oveq12d | |- ( k = i -> ( ( A ` k ) x. ( y ^ k ) ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 152 | eqid | |- ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) = ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) |
|
| 153 | ovex | |- ( ( A ` i ) x. ( y ^ i ) ) e. _V |
|
| 154 | 151 152 153 | fvmpt | |- ( i e. NN0 -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 155 | 32 154 | syl | |- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 156 | 149 150 155 | 3eqtr4d | |- ( ( ph /\ i e. NN ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) ) |
| 157 | 30 156 | sylan2br | |- ( ( ph /\ i e. ( ZZ>= ` ( 0 + 1 ) ) ) -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` i ) = ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) ) |
| 158 | 26 157 | seqfeq | |- ( ph -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) = seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ) |
| 159 | 158 | adantr | |- ( ( ph /\ y e. S ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) = seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ) |
| 160 | 18 | adantlr | |- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> ( A ` k ) e. CC ) |
| 161 | 160 145 | mulcld | |- ( ( ( ph /\ y e. S ) /\ k e. NN0 ) -> ( ( A ` k ) x. ( y ^ k ) ) e. CC ) |
| 162 | 161 | fmpttd | |- ( ( ph /\ y e. S ) -> ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) : NN0 --> CC ) |
| 163 | 162 | ffvelcdmda | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) e. CC ) |
| 164 | 154 | adantl | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` i ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 165 | 95 140 | mulcld | |- ( ( ( ph /\ y e. S ) /\ i e. NN0 ) -> ( ( A ` i ) x. ( y ^ i ) ) e. CC ) |
| 166 | 1 2 3 4 5 | abelthlem3 | |- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) e. dom ~~> ) |
| 167 | 11 90 164 165 166 | isumclim2 | |- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ~~> sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 168 | fveq2 | |- ( n = i -> ( A ` n ) = ( A ` i ) ) |
|
| 169 | oveq2 | |- ( n = i -> ( x ^ n ) = ( x ^ i ) ) |
|
| 170 | 168 169 | oveq12d | |- ( n = i -> ( ( A ` n ) x. ( x ^ n ) ) = ( ( A ` i ) x. ( x ^ i ) ) ) |
| 171 | 170 | cbvsumv | |- sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ i e. NN0 ( ( A ` i ) x. ( x ^ i ) ) |
| 172 | 124 | oveq2d | |- ( x = y -> ( ( A ` i ) x. ( x ^ i ) ) = ( ( A ` i ) x. ( y ^ i ) ) ) |
| 173 | 172 | sumeq2sdv | |- ( x = y -> sum_ i e. NN0 ( ( A ` i ) x. ( x ^ i ) ) = sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 174 | 171 173 | eqtrid | |- ( x = y -> sum_ n e. NN0 ( ( A ` n ) x. ( x ^ n ) ) = sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 175 | sumex | |- sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) e. _V |
|
| 176 | 174 6 175 | fvmpt | |- ( y e. S -> ( F ` y ) = sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 177 | 176 | adantl | |- ( ( ph /\ y e. S ) -> ( F ` y ) = sum_ i e. NN0 ( ( A ` i ) x. ( y ^ i ) ) ) |
| 178 | 167 177 | breqtrrd | |- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ~~> ( F ` y ) ) |
| 179 | 11 142 163 178 | clim2ser | |- ( ( ph /\ y e. S ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ~~> ( ( F ` y ) - ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) ) ) |
| 180 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` 0 ) ) |
|
| 181 | 51 180 | ax-mp | |- ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` 0 ) |
| 182 | fveq2 | |- ( k = 0 -> ( A ` k ) = ( A ` 0 ) ) |
|
| 183 | oveq2 | |- ( k = 0 -> ( y ^ k ) = ( y ^ 0 ) ) |
|
| 184 | 182 183 | oveq12d | |- ( k = 0 -> ( ( A ` k ) x. ( y ^ k ) ) = ( ( A ` 0 ) x. ( y ^ 0 ) ) ) |
| 185 | ovex | |- ( ( A ` 0 ) x. ( y ^ 0 ) ) e. _V |
|
| 186 | 184 152 185 | fvmpt | |- ( 0 e. NN0 -> ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` 0 ) = ( ( A ` 0 ) x. ( y ^ 0 ) ) ) |
| 187 | 7 186 | ax-mp | |- ( ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ` 0 ) = ( ( A ` 0 ) x. ( y ^ 0 ) ) |
| 188 | 181 187 | eqtri | |- ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( A ` 0 ) x. ( y ^ 0 ) ) |
| 189 | 138 | exp0d | |- ( ( ph /\ y e. S ) -> ( y ^ 0 ) = 1 ) |
| 190 | 189 | oveq2d | |- ( ( ph /\ y e. S ) -> ( ( A ` 0 ) x. ( y ^ 0 ) ) = ( ( A ` 0 ) x. 1 ) ) |
| 191 | 65 | adantr | |- ( ( ph /\ y e. S ) -> ( A ` 0 ) e. CC ) |
| 192 | 191 | mulridd | |- ( ( ph /\ y e. S ) -> ( ( A ` 0 ) x. 1 ) = ( A ` 0 ) ) |
| 193 | 190 192 | eqtrd | |- ( ( ph /\ y e. S ) -> ( ( A ` 0 ) x. ( y ^ 0 ) ) = ( A ` 0 ) ) |
| 194 | 188 193 | eqtrid | |- ( ( ph /\ y e. S ) -> ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) = ( A ` 0 ) ) |
| 195 | 194 | oveq2d | |- ( ( ph /\ y e. S ) -> ( ( F ` y ) - ( seq 0 ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ` 0 ) ) = ( ( F ` y ) - ( A ` 0 ) ) ) |
| 196 | 179 195 | breqtrd | |- ( ( ph /\ y e. S ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( ( A ` k ) x. ( y ^ k ) ) ) ) ~~> ( ( F ` y ) - ( A ` 0 ) ) ) |
| 197 | 159 196 | eqbrtrd | |- ( ( ph /\ y e. S ) -> seq ( 0 + 1 ) ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ~~> ( ( F ` y ) - ( A ` 0 ) ) ) |
| 198 | 11 142 148 197 | clim2ser2 | |- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ~~> ( ( ( F ` y ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) ) ) |
| 199 | seq1 | |- ( 0 e. ZZ -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` 0 ) ) |
|
| 200 | 51 199 | ax-mp | |- ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` 0 ) |
| 201 | 60 183 | oveq12d | |- ( k = 0 -> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) ) |
| 202 | ovex | |- ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) e. _V |
|
| 203 | 201 132 202 | fvmpt | |- ( 0 e. NN0 -> ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` 0 ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) ) |
| 204 | 7 203 | ax-mp | |- ( ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ` 0 ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) |
| 205 | 200 204 | eqtri | |- ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) |
| 206 | 189 | oveq2d | |- ( ( ph /\ y e. S ) -> ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) = ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. 1 ) ) |
| 207 | 15 | adantr | |- ( ( ph /\ y e. S ) -> sum_ m e. NN0 ( A ` m ) e. CC ) |
| 208 | 191 207 | subcld | |- ( ( ph /\ y e. S ) -> ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) e. CC ) |
| 209 | 208 | mulridd | |- ( ( ph /\ y e. S ) -> ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. 1 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 210 | 206 209 | eqtrd | |- ( ( ph /\ y e. S ) -> ( ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) x. ( y ^ 0 ) ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 211 | 205 210 | eqtrid | |- ( ( ph /\ y e. S ) -> ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) = ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 212 | 211 | oveq2d | |- ( ( ph /\ y e. S ) -> ( ( ( F ` y ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) ) = ( ( ( F ` y ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) ) |
| 213 | 1 2 3 4 5 6 | abelthlem4 | |- ( ph -> F : S --> CC ) |
| 214 | 213 | ffvelcdmda | |- ( ( ph /\ y e. S ) -> ( F ` y ) e. CC ) |
| 215 | 214 191 207 | npncand | |- ( ( ph /\ y e. S ) -> ( ( ( F ` y ) - ( A ` 0 ) ) + ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) ) = ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 216 | 212 215 | eqtrd | |- ( ( ph /\ y e. S ) -> ( ( ( F ` y ) - ( A ` 0 ) ) + ( seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ` 0 ) ) = ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 217 | 198 216 | breqtrd | |- ( ( ph /\ y e. S ) -> seq 0 ( + , ( k e. NN0 |-> ( if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) x. ( y ^ k ) ) ) ) ~~> ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 218 | 11 90 135 141 217 | isumclim | |- ( ( ph /\ y e. S ) -> sum_ i e. NN0 ( if ( i = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` i ) ) x. ( y ^ i ) ) = ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 219 | 129 218 | eqtrd | |- ( ( ph /\ y e. S ) -> ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) = ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) |
| 220 | 123 219 | oveq12d | |- ( ( ph /\ y e. S ) -> ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) = ( ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) - ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) ) |
| 221 | 213 | adantr | |- ( ( ph /\ y e. S ) -> F : S --> CC ) |
| 222 | 221 78 | ffvelcdmd | |- ( ( ph /\ y e. S ) -> ( F ` 1 ) e. CC ) |
| 223 | 222 214 207 | nnncan2d | |- ( ( ph /\ y e. S ) -> ( ( ( F ` 1 ) - sum_ m e. NN0 ( A ` m ) ) - ( ( F ` y ) - sum_ m e. NN0 ( A ` m ) ) ) = ( ( F ` 1 ) - ( F ` y ) ) ) |
| 224 | 220 223 | eqtrd | |- ( ( ph /\ y e. S ) -> ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) = ( ( F ` 1 ) - ( F ` y ) ) ) |
| 225 | 224 | fveq2d | |- ( ( ph /\ y e. S ) -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) = ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) ) |
| 226 | 225 | breq1d | |- ( ( ph /\ y e. S ) -> ( ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R <-> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |
| 227 | 226 | imbi2d | |- ( ( ph /\ y e. S ) -> ( ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) <-> ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) ) |
| 228 | 227 | ralbidva | |- ( ph -> ( A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) <-> A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) ) |
| 229 | 228 | rexbidv | |- ( ph -> ( E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) <-> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) ) |
| 230 | 229 | adantr | |- ( ( ph /\ R e. RR+ ) -> ( E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` 1 ) - ( ( x e. S |-> sum_ i e. NN0 ( ( ( k e. NN0 |-> if ( k = 0 , ( ( A ` 0 ) - sum_ m e. NN0 ( A ` m ) ) , ( A ` k ) ) ) ` i ) x. ( x ^ i ) ) ) ` y ) ) ) < R ) <-> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) ) |
| 231 | 75 230 | mpbid | |- ( ( ph /\ R e. RR+ ) -> E. w e. RR+ A. y e. S ( ( abs ` ( 1 - y ) ) < w -> ( abs ` ( ( F ` 1 ) - ( F ` y ) ) ) < R ) ) |