This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function G that gives the sequence of monomials of a power series. (Contributed by Mario Carneiro, 26-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| Assertion | pserval2 | |- ( ( X e. CC /\ N e. NN0 ) -> ( ( G ` X ) ` N ) = ( ( A ` N ) x. ( X ^ N ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pser.g | |- G = ( x e. CC |-> ( n e. NN0 |-> ( ( A ` n ) x. ( x ^ n ) ) ) ) |
|
| 2 | 1 | pserval | |- ( X e. CC -> ( G ` X ) = ( y e. NN0 |-> ( ( A ` y ) x. ( X ^ y ) ) ) ) |
| 3 | 2 | fveq1d | |- ( X e. CC -> ( ( G ` X ) ` N ) = ( ( y e. NN0 |-> ( ( A ` y ) x. ( X ^ y ) ) ) ` N ) ) |
| 4 | fveq2 | |- ( y = N -> ( A ` y ) = ( A ` N ) ) |
|
| 5 | oveq2 | |- ( y = N -> ( X ^ y ) = ( X ^ N ) ) |
|
| 6 | 4 5 | oveq12d | |- ( y = N -> ( ( A ` y ) x. ( X ^ y ) ) = ( ( A ` N ) x. ( X ^ N ) ) ) |
| 7 | eqid | |- ( y e. NN0 |-> ( ( A ` y ) x. ( X ^ y ) ) ) = ( y e. NN0 |-> ( ( A ` y ) x. ( X ^ y ) ) ) |
|
| 8 | ovex | |- ( ( A ` N ) x. ( X ^ N ) ) e. _V |
|
| 9 | 6 7 8 | fvmpt | |- ( N e. NN0 -> ( ( y e. NN0 |-> ( ( A ` y ) x. ( X ^ y ) ) ) ` N ) = ( ( A ` N ) x. ( X ^ N ) ) ) |
| 10 | 3 9 | sylan9eq | |- ( ( X e. CC /\ N e. NN0 ) -> ( ( G ` X ) ` N ) = ( ( A ` N ) x. ( X ^ N ) ) ) |