This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subset is open iff it equals its own interior. (Contributed by NM, 9-Oct-2006) (Revised by Mario Carneiro, 11-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | clscld.1 | |- X = U. J |
|
| Assertion | isopn3 | |- ( ( J e. Top /\ S C_ X ) -> ( S e. J <-> ( ( int ` J ) ` S ) = S ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clscld.1 | |- X = U. J |
|
| 2 | 1 | ntrval | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) = U. ( J i^i ~P S ) ) |
| 3 | inss2 | |- ( J i^i ~P S ) C_ ~P S |
|
| 4 | 3 | unissi | |- U. ( J i^i ~P S ) C_ U. ~P S |
| 5 | unipw | |- U. ~P S = S |
|
| 6 | 4 5 | sseqtri | |- U. ( J i^i ~P S ) C_ S |
| 7 | 6 | a1i | |- ( S e. J -> U. ( J i^i ~P S ) C_ S ) |
| 8 | id | |- ( S e. J -> S e. J ) |
|
| 9 | pwidg | |- ( S e. J -> S e. ~P S ) |
|
| 10 | 8 9 | elind | |- ( S e. J -> S e. ( J i^i ~P S ) ) |
| 11 | elssuni | |- ( S e. ( J i^i ~P S ) -> S C_ U. ( J i^i ~P S ) ) |
|
| 12 | 10 11 | syl | |- ( S e. J -> S C_ U. ( J i^i ~P S ) ) |
| 13 | 7 12 | eqssd | |- ( S e. J -> U. ( J i^i ~P S ) = S ) |
| 14 | 2 13 | sylan9eq | |- ( ( ( J e. Top /\ S C_ X ) /\ S e. J ) -> ( ( int ` J ) ` S ) = S ) |
| 15 | 14 | ex | |- ( ( J e. Top /\ S C_ X ) -> ( S e. J -> ( ( int ` J ) ` S ) = S ) ) |
| 16 | 1 | ntropn | |- ( ( J e. Top /\ S C_ X ) -> ( ( int ` J ) ` S ) e. J ) |
| 17 | eleq1 | |- ( ( ( int ` J ) ` S ) = S -> ( ( ( int ` J ) ` S ) e. J <-> S e. J ) ) |
|
| 18 | 16 17 | syl5ibcom | |- ( ( J e. Top /\ S C_ X ) -> ( ( ( int ` J ) ` S ) = S -> S e. J ) ) |
| 19 | 15 18 | impbid | |- ( ( J e. Top /\ S C_ X ) -> ( S e. J <-> ( ( int ` J ) ` S ) = S ) ) |