This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| vitali.2 | ⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) | ||
| vitali.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) | ||
| vitali.4 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) | ||
| vitali.5 | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | ||
| vitali.6 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) | ||
| vitali.7 | ⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) | ||
| Assertion | vitalilem4 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| 2 | vitali.2 | ⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) | |
| 3 | vitali.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) | |
| 4 | vitali.4 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 5 | vitali.5 | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 6 | vitali.6 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) | |
| 7 | vitali.7 | ⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) | |
| 8 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑚 ) ) | |
| 9 | 8 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) = ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 ↔ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 11 | 10 | rabbidv | ⊢ ( 𝑛 = 𝑚 → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 12 | reex | ⊢ ℝ ∈ V | |
| 13 | 12 | rabex | ⊢ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ∈ V |
| 14 | 11 6 13 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 15 | 14 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 16 | 15 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) ) |
| 17 | 1 2 3 4 5 6 7 | vitalilem2 | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) ) |
| 18 | 17 | simp1d | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 19 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 20 | 18 19 | sstrdi | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 21 | 20 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ran 𝐹 ⊆ ℝ ) |
| 22 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 23 | 1re | ⊢ 1 ∈ ℝ | |
| 24 | iccssre | ⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ ) | |
| 25 | 22 23 24 | mp2an | ⊢ ( - 1 [,] 1 ) ⊆ ℝ |
| 26 | f1of | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 27 | 5 26 | syl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 29 | 28 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ( - 1 [,] 1 ) ) |
| 30 | 25 29 | sselid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ℝ ) |
| 31 | eqidd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) | |
| 32 | 21 30 31 | ovolshft | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ran 𝐹 ) = ( vol* ‘ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) ) |
| 33 | 16 32 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ran 𝐹 ) ) |
| 34 | 3re | ⊢ 3 ∈ ℝ | |
| 35 | 34 | rexri | ⊢ 3 ∈ ℝ* |
| 36 | 35 | a1i | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 3 ∈ ℝ* ) |
| 37 | 3rp | ⊢ 3 ∈ ℝ+ | |
| 38 | 0re | ⊢ 0 ∈ ℝ | |
| 39 | 0le1 | ⊢ 0 ≤ 1 | |
| 40 | ovolicc | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1 ) → ( vol* ‘ ( 0 [,] 1 ) ) = ( 1 − 0 ) ) | |
| 41 | 38 23 39 40 | mp3an | ⊢ ( vol* ‘ ( 0 [,] 1 ) ) = ( 1 − 0 ) |
| 42 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 43 | 41 42 | eqtri | ⊢ ( vol* ‘ ( 0 [,] 1 ) ) = 1 |
| 44 | 43 23 | eqeltri | ⊢ ( vol* ‘ ( 0 [,] 1 ) ) ∈ ℝ |
| 45 | ovolsscl | ⊢ ( ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ℝ ∧ ( vol* ‘ ( 0 [,] 1 ) ) ∈ ℝ ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) | |
| 46 | 19 44 45 | mp3an23 | ⊢ ( ran 𝐹 ⊆ ( 0 [,] 1 ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) |
| 47 | 18 46 | syl | ⊢ ( 𝜑 → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) |
| 48 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) |
| 49 | simpr | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 0 < ( vol* ‘ ran 𝐹 ) ) | |
| 50 | 48 49 | elrpd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ+ ) |
| 51 | rpdivcl | ⊢ ( ( 3 ∈ ℝ+ ∧ ( vol* ‘ ran 𝐹 ) ∈ ℝ+ ) → ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ+ ) | |
| 52 | 37 50 51 | sylancr | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ+ ) |
| 53 | 52 | rpred | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ ) |
| 54 | 52 | rpge0d | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 0 ≤ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) |
| 55 | flge0nn0 | ⊢ ( ( ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ ∧ 0 ≤ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) → ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) ∈ ℕ0 ) | |
| 56 | 53 54 55 | syl2anc | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) ∈ ℕ0 ) |
| 57 | nn0p1nn | ⊢ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) ∈ ℕ0 → ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℕ ) | |
| 58 | 56 57 | syl | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℕ ) |
| 59 | 58 | nnred | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℝ ) |
| 60 | 59 48 | remulcld | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ∈ ℝ ) |
| 61 | 60 | rexrd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ∈ ℝ* ) |
| 62 | 12 | elpw2 | ⊢ ( ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ ) |
| 63 | 20 62 | sylibr | ⊢ ( 𝜑 → ran 𝐹 ∈ 𝒫 ℝ ) |
| 64 | 63 | anim1i | ⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ∈ dom vol ) → ( ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol ) ) |
| 65 | eldif | ⊢ ( ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ↔ ( ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol ) ) | |
| 66 | 64 65 | sylibr | ⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ∈ dom vol ) → ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) |
| 67 | 66 | ex | ⊢ ( 𝜑 → ( ¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) |
| 68 | 7 67 | mt3d | ⊢ ( 𝜑 → ran 𝐹 ∈ dom vol ) |
| 69 | inss1 | ⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℚ | |
| 70 | qssre | ⊢ ℚ ⊆ ℝ | |
| 71 | 69 70 | sstri | ⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℝ |
| 72 | fss | ⊢ ( ( 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℝ ) → 𝐺 : ℕ ⟶ ℝ ) | |
| 73 | 27 71 72 | sylancl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℝ ) |
| 74 | 73 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 75 | shftmbl | ⊢ ( ( ran 𝐹 ∈ dom vol ∧ ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ∈ dom vol ) | |
| 76 | 68 74 75 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ∈ dom vol ) |
| 77 | 76 6 | fmptd | ⊢ ( 𝜑 → 𝑇 : ℕ ⟶ dom vol ) |
| 78 | 77 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 79 | 78 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 80 | iunmbl | ⊢ ( ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) | |
| 81 | 79 80 | syl | ⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 82 | mblss | ⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) | |
| 83 | ovolcl | ⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) | |
| 84 | 81 82 83 | 3syl | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 85 | 84 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 86 | flltp1 | ⊢ ( ( 3 / ( vol* ‘ ran 𝐹 ) ) ∈ ℝ → ( 3 / ( vol* ‘ ran 𝐹 ) ) < ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) | |
| 87 | 53 86 | syl | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 3 / ( vol* ‘ ran 𝐹 ) ) < ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) |
| 88 | 34 | a1i | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 3 ∈ ℝ ) |
| 89 | 88 59 50 | ltdivmul2d | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( 3 / ( vol* ‘ ran 𝐹 ) ) < ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ↔ 3 < ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) ) |
| 90 | 87 89 | mpbid | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 3 < ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) |
| 91 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 92 | 1zzd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 1 ∈ ℤ ) | |
| 93 | mblvol | ⊢ ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) | |
| 94 | 78 93 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) |
| 95 | 94 33 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ran 𝐹 ) ) |
| 96 | 47 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ran 𝐹 ) ∈ ℝ ) |
| 97 | 95 96 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) |
| 98 | 97 | adantlr | ⊢ ( ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) |
| 99 | eqid | ⊢ ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) | |
| 100 | 98 99 | fmptd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) : ℕ ⟶ ℝ ) |
| 101 | 100 | ffvelcdmda | ⊢ ( ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) ∧ 𝑘 ∈ ℕ ) → ( ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ‘ 𝑘 ) ∈ ℝ ) |
| 102 | 91 92 101 | serfre | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) : ℕ ⟶ ℝ ) |
| 103 | 102 | frnd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⊆ ℝ ) |
| 104 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 105 | 103 104 | sstrdi | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⊆ ℝ* ) |
| 106 | 95 | adantlr | ⊢ ( ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) ∧ 𝑚 ∈ ℕ ) → ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ran 𝐹 ) ) |
| 107 | 106 | mpteq2dva | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ran 𝐹 ) ) ) |
| 108 | fconstmpt | ⊢ ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ran 𝐹 ) ) | |
| 109 | 107 108 | eqtr4di | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) |
| 110 | 109 | seqeq3d | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) ) |
| 111 | 110 | fveq1d | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) = ( seq 1 ( + , ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) ) |
| 112 | 48 | recnd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ran 𝐹 ) ∈ ℂ ) |
| 113 | ser1const | ⊢ ( ( ( vol* ‘ ran 𝐹 ) ∈ ℂ ∧ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) = ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) | |
| 114 | 112 58 113 | syl2anc | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( seq 1 ( + , ( ℕ × { ( vol* ‘ ran 𝐹 ) } ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) = ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) |
| 115 | 111 114 | eqtrd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) = ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ) |
| 116 | 102 | ffnd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) Fn ℕ ) |
| 117 | fnfvelrn | ⊢ ( ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) Fn ℕ ∧ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ∈ ℕ ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) ∈ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ) | |
| 118 | 116 58 117 | syl2anc | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ‘ ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) ) ∈ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 119 | 115 118 | eqeltrrd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ∈ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 120 | supxrub | ⊢ ( ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⊆ ℝ* ∧ ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ∈ ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) | |
| 121 | 105 119 120 | syl2anc | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ≤ sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 122 | 81 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 123 | mblvol | ⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ( vol ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) | |
| 124 | 122 123 | syl | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 125 | 78 97 | jca | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol ∧ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) ) |
| 126 | 125 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol ∧ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) ) |
| 127 | 1 2 3 4 5 6 7 | vitalilem3 | ⊢ ( 𝜑 → Disj 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 128 | 127 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → Disj 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 129 | eqid | ⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) | |
| 130 | 129 99 | voliun | ⊢ ( ( ∀ 𝑚 ∈ ℕ ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol ∧ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) ∧ Disj 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) → ( vol ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 131 | 126 128 130 | syl2an2r | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 132 | 124 131 | eqtr3d | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = sup ( ran seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) , ℝ* , < ) ) |
| 133 | 121 132 | breqtrrd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( ( ⌊ ‘ ( 3 / ( vol* ‘ ran 𝐹 ) ) ) + 1 ) · ( vol* ‘ ran 𝐹 ) ) ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 134 | 36 61 85 90 133 | xrltletrd | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → 3 < ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 135 | 17 | simp3d | ⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) |
| 136 | 135 | adantr | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) |
| 137 | 2re | ⊢ 2 ∈ ℝ | |
| 138 | iccssre | ⊢ ( ( - 1 ∈ ℝ ∧ 2 ∈ ℝ ) → ( - 1 [,] 2 ) ⊆ ℝ ) | |
| 139 | 22 137 138 | mp2an | ⊢ ( - 1 [,] 2 ) ⊆ ℝ |
| 140 | ovolss | ⊢ ( ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ∧ ( - 1 [,] 2 ) ⊆ ℝ ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ ( vol* ‘ ( - 1 [,] 2 ) ) ) | |
| 141 | 136 139 140 | sylancl | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ ( vol* ‘ ( - 1 [,] 2 ) ) ) |
| 142 | 2cn | ⊢ 2 ∈ ℂ | |
| 143 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 144 | 142 143 | subnegi | ⊢ ( 2 − - 1 ) = ( 2 + 1 ) |
| 145 | neg1lt0 | ⊢ - 1 < 0 | |
| 146 | 2pos | ⊢ 0 < 2 | |
| 147 | 22 38 137 | lttri | ⊢ ( ( - 1 < 0 ∧ 0 < 2 ) → - 1 < 2 ) |
| 148 | 145 146 147 | mp2an | ⊢ - 1 < 2 |
| 149 | 22 137 148 | ltleii | ⊢ - 1 ≤ 2 |
| 150 | ovolicc | ⊢ ( ( - 1 ∈ ℝ ∧ 2 ∈ ℝ ∧ - 1 ≤ 2 ) → ( vol* ‘ ( - 1 [,] 2 ) ) = ( 2 − - 1 ) ) | |
| 151 | 22 137 149 150 | mp3an | ⊢ ( vol* ‘ ( - 1 [,] 2 ) ) = ( 2 − - 1 ) |
| 152 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 153 | 144 151 152 | 3eqtr4i | ⊢ ( vol* ‘ ( - 1 [,] 2 ) ) = 3 |
| 154 | 141 153 | breqtrdi | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 3 ) |
| 155 | xrlenlt | ⊢ ( ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ∧ 3 ∈ ℝ* ) → ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 3 ↔ ¬ 3 < ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) ) | |
| 156 | 85 35 155 | sylancl | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 3 ↔ ¬ 3 < ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) ) |
| 157 | 154 156 | mpbid | ⊢ ( ( 𝜑 ∧ 0 < ( vol* ‘ ran 𝐹 ) ) → ¬ 3 < ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 158 | 134 157 | pm2.65da | ⊢ ( 𝜑 → ¬ 0 < ( vol* ‘ ran 𝐹 ) ) |
| 159 | ovolge0 | ⊢ ( ran 𝐹 ⊆ ℝ → 0 ≤ ( vol* ‘ ran 𝐹 ) ) | |
| 160 | 20 159 | syl | ⊢ ( 𝜑 → 0 ≤ ( vol* ‘ ran 𝐹 ) ) |
| 161 | 0xr | ⊢ 0 ∈ ℝ* | |
| 162 | ovolcl | ⊢ ( ran 𝐹 ⊆ ℝ → ( vol* ‘ ran 𝐹 ) ∈ ℝ* ) | |
| 163 | 20 162 | syl | ⊢ ( 𝜑 → ( vol* ‘ ran 𝐹 ) ∈ ℝ* ) |
| 164 | xrleloe | ⊢ ( ( 0 ∈ ℝ* ∧ ( vol* ‘ ran 𝐹 ) ∈ ℝ* ) → ( 0 ≤ ( vol* ‘ ran 𝐹 ) ↔ ( 0 < ( vol* ‘ ran 𝐹 ) ∨ 0 = ( vol* ‘ ran 𝐹 ) ) ) ) | |
| 165 | 161 163 164 | sylancr | ⊢ ( 𝜑 → ( 0 ≤ ( vol* ‘ ran 𝐹 ) ↔ ( 0 < ( vol* ‘ ran 𝐹 ) ∨ 0 = ( vol* ‘ ran 𝐹 ) ) ) ) |
| 166 | 160 165 | mpbid | ⊢ ( 𝜑 → ( 0 < ( vol* ‘ ran 𝐹 ) ∨ 0 = ( vol* ‘ ran 𝐹 ) ) ) |
| 167 | 166 | ord | ⊢ ( 𝜑 → ( ¬ 0 < ( vol* ‘ ran 𝐹 ) → 0 = ( vol* ‘ ran 𝐹 ) ) ) |
| 168 | 158 167 | mpd | ⊢ ( 𝜑 → 0 = ( vol* ‘ ran 𝐹 ) ) |
| 169 | 168 | adantr | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → 0 = ( vol* ‘ ran 𝐹 ) ) |
| 170 | 33 169 | eqtr4d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = 0 ) |