This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| vitali.2 | |- S = ( ( 0 [,] 1 ) /. .~ ) |
||
| vitali.3 | |- ( ph -> F Fn S ) |
||
| vitali.4 | |- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
||
| vitali.5 | |- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
||
| vitali.6 | |- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
||
| vitali.7 | |- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
||
| Assertion | vitalilem4 | |- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| 2 | vitali.2 | |- S = ( ( 0 [,] 1 ) /. .~ ) |
|
| 3 | vitali.3 | |- ( ph -> F Fn S ) |
|
| 4 | vitali.4 | |- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
|
| 5 | vitali.5 | |- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 6 | vitali.6 | |- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
|
| 7 | vitali.7 | |- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
|
| 8 | fveq2 | |- ( n = m -> ( G ` n ) = ( G ` m ) ) |
|
| 9 | 8 | oveq2d | |- ( n = m -> ( s - ( G ` n ) ) = ( s - ( G ` m ) ) ) |
| 10 | 9 | eleq1d | |- ( n = m -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` m ) ) e. ran F ) ) |
| 11 | 10 | rabbidv | |- ( n = m -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 12 | reex | |- RR e. _V |
|
| 13 | 12 | rabex | |- { s e. RR | ( s - ( G ` m ) ) e. ran F } e. _V |
| 14 | 11 6 13 | fvmpt | |- ( m e. NN -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 15 | 14 | adantl | |- ( ( ph /\ m e. NN ) -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 16 | 15 | fveq2d | |- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = ( vol* ` { s e. RR | ( s - ( G ` m ) ) e. ran F } ) ) |
| 17 | 1 2 3 4 5 6 7 | vitalilem2 | |- ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |
| 18 | 17 | simp1d | |- ( ph -> ran F C_ ( 0 [,] 1 ) ) |
| 19 | unitssre | |- ( 0 [,] 1 ) C_ RR |
|
| 20 | 18 19 | sstrdi | |- ( ph -> ran F C_ RR ) |
| 21 | 20 | adantr | |- ( ( ph /\ m e. NN ) -> ran F C_ RR ) |
| 22 | neg1rr | |- -u 1 e. RR |
|
| 23 | 1re | |- 1 e. RR |
|
| 24 | iccssre | |- ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) |
|
| 25 | 22 23 24 | mp2an | |- ( -u 1 [,] 1 ) C_ RR |
| 26 | f1of | |- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 27 | 5 26 | syl | |- ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 28 | 27 | ffvelcdmda | |- ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 29 | 28 | elin2d | |- ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( -u 1 [,] 1 ) ) |
| 30 | 25 29 | sselid | |- ( ( ph /\ m e. NN ) -> ( G ` m ) e. RR ) |
| 31 | eqidd | |- ( ( ph /\ m e. NN ) -> { s e. RR | ( s - ( G ` m ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
|
| 32 | 21 30 31 | ovolshft | |- ( ( ph /\ m e. NN ) -> ( vol* ` ran F ) = ( vol* ` { s e. RR | ( s - ( G ` m ) ) e. ran F } ) ) |
| 33 | 16 32 | eqtr4d | |- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = ( vol* ` ran F ) ) |
| 34 | 3re | |- 3 e. RR |
|
| 35 | 34 | rexri | |- 3 e. RR* |
| 36 | 35 | a1i | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 3 e. RR* ) |
| 37 | 3rp | |- 3 e. RR+ |
|
| 38 | 0re | |- 0 e. RR |
|
| 39 | 0le1 | |- 0 <_ 1 |
|
| 40 | ovolicc | |- ( ( 0 e. RR /\ 1 e. RR /\ 0 <_ 1 ) -> ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) ) |
|
| 41 | 38 23 39 40 | mp3an | |- ( vol* ` ( 0 [,] 1 ) ) = ( 1 - 0 ) |
| 42 | 1m0e1 | |- ( 1 - 0 ) = 1 |
|
| 43 | 41 42 | eqtri | |- ( vol* ` ( 0 [,] 1 ) ) = 1 |
| 44 | 43 23 | eqeltri | |- ( vol* ` ( 0 [,] 1 ) ) e. RR |
| 45 | ovolsscl | |- ( ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ RR /\ ( vol* ` ( 0 [,] 1 ) ) e. RR ) -> ( vol* ` ran F ) e. RR ) |
|
| 46 | 19 44 45 | mp3an23 | |- ( ran F C_ ( 0 [,] 1 ) -> ( vol* ` ran F ) e. RR ) |
| 47 | 18 46 | syl | |- ( ph -> ( vol* ` ran F ) e. RR ) |
| 48 | 47 | adantr | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` ran F ) e. RR ) |
| 49 | simpr | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 0 < ( vol* ` ran F ) ) |
|
| 50 | 48 49 | elrpd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` ran F ) e. RR+ ) |
| 51 | rpdivcl | |- ( ( 3 e. RR+ /\ ( vol* ` ran F ) e. RR+ ) -> ( 3 / ( vol* ` ran F ) ) e. RR+ ) |
|
| 52 | 37 50 51 | sylancr | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( 3 / ( vol* ` ran F ) ) e. RR+ ) |
| 53 | 52 | rpred | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( 3 / ( vol* ` ran F ) ) e. RR ) |
| 54 | 52 | rpge0d | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 0 <_ ( 3 / ( vol* ` ran F ) ) ) |
| 55 | flge0nn0 | |- ( ( ( 3 / ( vol* ` ran F ) ) e. RR /\ 0 <_ ( 3 / ( vol* ` ran F ) ) ) -> ( |_ ` ( 3 / ( vol* ` ran F ) ) ) e. NN0 ) |
|
| 56 | 53 54 55 | syl2anc | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( |_ ` ( 3 / ( vol* ` ran F ) ) ) e. NN0 ) |
| 57 | nn0p1nn | |- ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) e. NN0 -> ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. NN ) |
|
| 58 | 56 57 | syl | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. NN ) |
| 59 | 58 | nnred | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. RR ) |
| 60 | 59 48 | remulcld | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) e. RR ) |
| 61 | 60 | rexrd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) e. RR* ) |
| 62 | 12 | elpw2 | |- ( ran F e. ~P RR <-> ran F C_ RR ) |
| 63 | 20 62 | sylibr | |- ( ph -> ran F e. ~P RR ) |
| 64 | 63 | anim1i | |- ( ( ph /\ -. ran F e. dom vol ) -> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) |
| 65 | eldif | |- ( ran F e. ( ~P RR \ dom vol ) <-> ( ran F e. ~P RR /\ -. ran F e. dom vol ) ) |
|
| 66 | 64 65 | sylibr | |- ( ( ph /\ -. ran F e. dom vol ) -> ran F e. ( ~P RR \ dom vol ) ) |
| 67 | 66 | ex | |- ( ph -> ( -. ran F e. dom vol -> ran F e. ( ~P RR \ dom vol ) ) ) |
| 68 | 7 67 | mt3d | |- ( ph -> ran F e. dom vol ) |
| 69 | inss1 | |- ( QQ i^i ( -u 1 [,] 1 ) ) C_ QQ |
|
| 70 | qssre | |- QQ C_ RR |
|
| 71 | 69 70 | sstri | |- ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR |
| 72 | fss | |- ( ( G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( QQ i^i ( -u 1 [,] 1 ) ) C_ RR ) -> G : NN --> RR ) |
|
| 73 | 27 71 72 | sylancl | |- ( ph -> G : NN --> RR ) |
| 74 | 73 | ffvelcdmda | |- ( ( ph /\ n e. NN ) -> ( G ` n ) e. RR ) |
| 75 | shftmbl | |- ( ( ran F e. dom vol /\ ( G ` n ) e. RR ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) |
|
| 76 | 68 74 75 | syl2an2r | |- ( ( ph /\ n e. NN ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } e. dom vol ) |
| 77 | 76 6 | fmptd | |- ( ph -> T : NN --> dom vol ) |
| 78 | 77 | ffvelcdmda | |- ( ( ph /\ m e. NN ) -> ( T ` m ) e. dom vol ) |
| 79 | 78 | ralrimiva | |- ( ph -> A. m e. NN ( T ` m ) e. dom vol ) |
| 80 | iunmbl | |- ( A. m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) e. dom vol ) |
|
| 81 | 79 80 | syl | |- ( ph -> U_ m e. NN ( T ` m ) e. dom vol ) |
| 82 | mblss | |- ( U_ m e. NN ( T ` m ) e. dom vol -> U_ m e. NN ( T ` m ) C_ RR ) |
|
| 83 | ovolcl | |- ( U_ m e. NN ( T ` m ) C_ RR -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
|
| 84 | 81 82 83 | 3syl | |- ( ph -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
| 85 | 84 | adantr | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* ) |
| 86 | flltp1 | |- ( ( 3 / ( vol* ` ran F ) ) e. RR -> ( 3 / ( vol* ` ran F ) ) < ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) |
|
| 87 | 53 86 | syl | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( 3 / ( vol* ` ran F ) ) < ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) |
| 88 | 34 | a1i | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 3 e. RR ) |
| 89 | 88 59 50 | ltdivmul2d | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( 3 / ( vol* ` ran F ) ) < ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) <-> 3 < ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) ) |
| 90 | 87 89 | mpbid | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 3 < ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) |
| 91 | nnuz | |- NN = ( ZZ>= ` 1 ) |
|
| 92 | 1zzd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 1 e. ZZ ) |
|
| 93 | mblvol | |- ( ( T ` m ) e. dom vol -> ( vol ` ( T ` m ) ) = ( vol* ` ( T ` m ) ) ) |
|
| 94 | 78 93 | syl | |- ( ( ph /\ m e. NN ) -> ( vol ` ( T ` m ) ) = ( vol* ` ( T ` m ) ) ) |
| 95 | 94 33 | eqtrd | |- ( ( ph /\ m e. NN ) -> ( vol ` ( T ` m ) ) = ( vol* ` ran F ) ) |
| 96 | 47 | adantr | |- ( ( ph /\ m e. NN ) -> ( vol* ` ran F ) e. RR ) |
| 97 | 95 96 | eqeltrd | |- ( ( ph /\ m e. NN ) -> ( vol ` ( T ` m ) ) e. RR ) |
| 98 | 97 | adantlr | |- ( ( ( ph /\ 0 < ( vol* ` ran F ) ) /\ m e. NN ) -> ( vol ` ( T ` m ) ) e. RR ) |
| 99 | eqid | |- ( m e. NN |-> ( vol ` ( T ` m ) ) ) = ( m e. NN |-> ( vol ` ( T ` m ) ) ) |
|
| 100 | 98 99 | fmptd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( m e. NN |-> ( vol ` ( T ` m ) ) ) : NN --> RR ) |
| 101 | 100 | ffvelcdmda | |- ( ( ( ph /\ 0 < ( vol* ` ran F ) ) /\ k e. NN ) -> ( ( m e. NN |-> ( vol ` ( T ` m ) ) ) ` k ) e. RR ) |
| 102 | 91 92 101 | serfre | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) : NN --> RR ) |
| 103 | 102 | frnd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) C_ RR ) |
| 104 | ressxr | |- RR C_ RR* |
|
| 105 | 103 104 | sstrdi | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) C_ RR* ) |
| 106 | 95 | adantlr | |- ( ( ( ph /\ 0 < ( vol* ` ran F ) ) /\ m e. NN ) -> ( vol ` ( T ` m ) ) = ( vol* ` ran F ) ) |
| 107 | 106 | mpteq2dva | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( m e. NN |-> ( vol ` ( T ` m ) ) ) = ( m e. NN |-> ( vol* ` ran F ) ) ) |
| 108 | fconstmpt | |- ( NN X. { ( vol* ` ran F ) } ) = ( m e. NN |-> ( vol* ` ran F ) ) |
|
| 109 | 107 108 | eqtr4di | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( m e. NN |-> ( vol ` ( T ` m ) ) ) = ( NN X. { ( vol* ` ran F ) } ) ) |
| 110 | 109 | seqeq3d | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) = seq 1 ( + , ( NN X. { ( vol* ` ran F ) } ) ) ) |
| 111 | 110 | fveq1d | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) = ( seq 1 ( + , ( NN X. { ( vol* ` ran F ) } ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) ) |
| 112 | 48 | recnd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` ran F ) e. CC ) |
| 113 | ser1const | |- ( ( ( vol* ` ran F ) e. CC /\ ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. NN ) -> ( seq 1 ( + , ( NN X. { ( vol* ` ran F ) } ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) = ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) |
|
| 114 | 112 58 113 | syl2anc | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( seq 1 ( + , ( NN X. { ( vol* ` ran F ) } ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) = ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) |
| 115 | 111 114 | eqtrd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) = ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) ) |
| 116 | 102 | ffnd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) Fn NN ) |
| 117 | fnfvelrn | |- ( ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) Fn NN /\ ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) e. NN ) -> ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) e. ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ) |
|
| 118 | 116 58 117 | syl2anc | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ` ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) ) e. ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ) |
| 119 | 115 118 | eqeltrrd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) e. ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ) |
| 120 | supxrub | |- ( ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) C_ RR* /\ ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) e. ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) <_ sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
|
| 121 | 105 119 120 | syl2anc | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) <_ sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
| 122 | 81 | adantr | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> U_ m e. NN ( T ` m ) e. dom vol ) |
| 123 | mblvol | |- ( U_ m e. NN ( T ` m ) e. dom vol -> ( vol ` U_ m e. NN ( T ` m ) ) = ( vol* ` U_ m e. NN ( T ` m ) ) ) |
|
| 124 | 122 123 | syl | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol ` U_ m e. NN ( T ` m ) ) = ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 125 | 78 97 | jca | |- ( ( ph /\ m e. NN ) -> ( ( T ` m ) e. dom vol /\ ( vol ` ( T ` m ) ) e. RR ) ) |
| 126 | 125 | ralrimiva | |- ( ph -> A. m e. NN ( ( T ` m ) e. dom vol /\ ( vol ` ( T ` m ) ) e. RR ) ) |
| 127 | 1 2 3 4 5 6 7 | vitalilem3 | |- ( ph -> Disj_ m e. NN ( T ` m ) ) |
| 128 | 127 | adantr | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> Disj_ m e. NN ( T ` m ) ) |
| 129 | eqid | |- seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) = seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) |
|
| 130 | 129 99 | voliun | |- ( ( A. m e. NN ( ( T ` m ) e. dom vol /\ ( vol ` ( T ` m ) ) e. RR ) /\ Disj_ m e. NN ( T ` m ) ) -> ( vol ` U_ m e. NN ( T ` m ) ) = sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
| 131 | 126 128 130 | syl2an2r | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol ` U_ m e. NN ( T ` m ) ) = sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
| 132 | 124 131 | eqtr3d | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` U_ m e. NN ( T ` m ) ) = sup ( ran seq 1 ( + , ( m e. NN |-> ( vol ` ( T ` m ) ) ) ) , RR* , < ) ) |
| 133 | 121 132 | breqtrrd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( ( |_ ` ( 3 / ( vol* ` ran F ) ) ) + 1 ) x. ( vol* ` ran F ) ) <_ ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 134 | 36 61 85 90 133 | xrltletrd | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> 3 < ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 135 | 17 | simp3d | |- ( ph -> U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) |
| 136 | 135 | adantr | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) |
| 137 | 2re | |- 2 e. RR |
|
| 138 | iccssre | |- ( ( -u 1 e. RR /\ 2 e. RR ) -> ( -u 1 [,] 2 ) C_ RR ) |
|
| 139 | 22 137 138 | mp2an | |- ( -u 1 [,] 2 ) C_ RR |
| 140 | ovolss | |- ( ( U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) /\ ( -u 1 [,] 2 ) C_ RR ) -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ ( vol* ` ( -u 1 [,] 2 ) ) ) |
|
| 141 | 136 139 140 | sylancl | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ ( vol* ` ( -u 1 [,] 2 ) ) ) |
| 142 | 2cn | |- 2 e. CC |
|
| 143 | ax-1cn | |- 1 e. CC |
|
| 144 | 142 143 | subnegi | |- ( 2 - -u 1 ) = ( 2 + 1 ) |
| 145 | neg1lt0 | |- -u 1 < 0 |
|
| 146 | 2pos | |- 0 < 2 |
|
| 147 | 22 38 137 | lttri | |- ( ( -u 1 < 0 /\ 0 < 2 ) -> -u 1 < 2 ) |
| 148 | 145 146 147 | mp2an | |- -u 1 < 2 |
| 149 | 22 137 148 | ltleii | |- -u 1 <_ 2 |
| 150 | ovolicc | |- ( ( -u 1 e. RR /\ 2 e. RR /\ -u 1 <_ 2 ) -> ( vol* ` ( -u 1 [,] 2 ) ) = ( 2 - -u 1 ) ) |
|
| 151 | 22 137 149 150 | mp3an | |- ( vol* ` ( -u 1 [,] 2 ) ) = ( 2 - -u 1 ) |
| 152 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 153 | 144 151 152 | 3eqtr4i | |- ( vol* ` ( -u 1 [,] 2 ) ) = 3 |
| 154 | 141 153 | breqtrdi | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( vol* ` U_ m e. NN ( T ` m ) ) <_ 3 ) |
| 155 | xrlenlt | |- ( ( ( vol* ` U_ m e. NN ( T ` m ) ) e. RR* /\ 3 e. RR* ) -> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 3 <-> -. 3 < ( vol* ` U_ m e. NN ( T ` m ) ) ) ) |
|
| 156 | 85 35 155 | sylancl | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> ( ( vol* ` U_ m e. NN ( T ` m ) ) <_ 3 <-> -. 3 < ( vol* ` U_ m e. NN ( T ` m ) ) ) ) |
| 157 | 154 156 | mpbid | |- ( ( ph /\ 0 < ( vol* ` ran F ) ) -> -. 3 < ( vol* ` U_ m e. NN ( T ` m ) ) ) |
| 158 | 134 157 | pm2.65da | |- ( ph -> -. 0 < ( vol* ` ran F ) ) |
| 159 | ovolge0 | |- ( ran F C_ RR -> 0 <_ ( vol* ` ran F ) ) |
|
| 160 | 20 159 | syl | |- ( ph -> 0 <_ ( vol* ` ran F ) ) |
| 161 | 0xr | |- 0 e. RR* |
|
| 162 | ovolcl | |- ( ran F C_ RR -> ( vol* ` ran F ) e. RR* ) |
|
| 163 | 20 162 | syl | |- ( ph -> ( vol* ` ran F ) e. RR* ) |
| 164 | xrleloe | |- ( ( 0 e. RR* /\ ( vol* ` ran F ) e. RR* ) -> ( 0 <_ ( vol* ` ran F ) <-> ( 0 < ( vol* ` ran F ) \/ 0 = ( vol* ` ran F ) ) ) ) |
|
| 165 | 161 163 164 | sylancr | |- ( ph -> ( 0 <_ ( vol* ` ran F ) <-> ( 0 < ( vol* ` ran F ) \/ 0 = ( vol* ` ran F ) ) ) ) |
| 166 | 160 165 | mpbid | |- ( ph -> ( 0 < ( vol* ` ran F ) \/ 0 = ( vol* ` ran F ) ) ) |
| 167 | 166 | ord | |- ( ph -> ( -. 0 < ( vol* ` ran F ) -> 0 = ( vol* ` ran F ) ) ) |
| 168 | 158 167 | mpd | |- ( ph -> 0 = ( vol* ` ran F ) ) |
| 169 | 168 | adantr | |- ( ( ph /\ m e. NN ) -> 0 = ( vol* ` ran F ) ) |
| 170 | 33 169 | eqtr4d | |- ( ( ph /\ m e. NN ) -> ( vol* ` ( T ` m ) ) = 0 ) |