This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| vitali.2 | ⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) | ||
| vitali.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) | ||
| vitali.4 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) | ||
| vitali.5 | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | ||
| vitali.6 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) | ||
| vitali.7 | ⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) | ||
| Assertion | vitalilem5 | ⊢ ¬ 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| 2 | vitali.2 | ⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) | |
| 3 | vitali.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) | |
| 4 | vitali.4 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 5 | vitali.5 | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 6 | vitali.6 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) | |
| 7 | vitali.7 | ⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) | |
| 8 | 0lt1 | ⊢ 0 < 1 | |
| 9 | 0re | ⊢ 0 ∈ ℝ | |
| 10 | 1re | ⊢ 1 ∈ ℝ | |
| 11 | 0le1 | ⊢ 0 ≤ 1 | |
| 12 | ovolicc | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 0 ≤ 1 ) → ( vol* ‘ ( 0 [,] 1 ) ) = ( 1 − 0 ) ) | |
| 13 | 9 10 11 12 | mp3an | ⊢ ( vol* ‘ ( 0 [,] 1 ) ) = ( 1 − 0 ) |
| 14 | 1m0e1 | ⊢ ( 1 − 0 ) = 1 | |
| 15 | 13 14 | eqtri | ⊢ ( vol* ‘ ( 0 [,] 1 ) ) = 1 |
| 16 | 8 15 | breqtrri | ⊢ 0 < ( vol* ‘ ( 0 [,] 1 ) ) |
| 17 | 15 10 | eqeltri | ⊢ ( vol* ‘ ( 0 [,] 1 ) ) ∈ ℝ |
| 18 | 9 17 | ltnlei | ⊢ ( 0 < ( vol* ‘ ( 0 [,] 1 ) ) ↔ ¬ ( vol* ‘ ( 0 [,] 1 ) ) ≤ 0 ) |
| 19 | 16 18 | mpbi | ⊢ ¬ ( vol* ‘ ( 0 [,] 1 ) ) ≤ 0 |
| 20 | 1 2 3 4 5 6 7 | vitalilem2 | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) ) |
| 21 | 20 | simp2d | ⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 22 | 1 | vitalilem1 | ⊢ ∼ Er ( 0 [,] 1 ) |
| 23 | erdm | ⊢ ( ∼ Er ( 0 [,] 1 ) → dom ∼ = ( 0 [,] 1 ) ) | |
| 24 | 22 23 | ax-mp | ⊢ dom ∼ = ( 0 [,] 1 ) |
| 25 | simpr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝑆 ) | |
| 26 | 25 2 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ ( ( 0 [,] 1 ) / ∼ ) ) |
| 27 | elqsn0 | ⊢ ( ( dom ∼ = ( 0 [,] 1 ) ∧ 𝑧 ∈ ( ( 0 [,] 1 ) / ∼ ) ) → 𝑧 ≠ ∅ ) | |
| 28 | 24 26 27 | sylancr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ≠ ∅ ) |
| 29 | 22 | a1i | ⊢ ( 𝜑 → ∼ Er ( 0 [,] 1 ) ) |
| 30 | 29 | qsss | ⊢ ( 𝜑 → ( ( 0 [,] 1 ) / ∼ ) ⊆ 𝒫 ( 0 [,] 1 ) ) |
| 31 | 2 30 | eqsstrid | ⊢ ( 𝜑 → 𝑆 ⊆ 𝒫 ( 0 [,] 1 ) ) |
| 32 | 31 | sselda | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ∈ 𝒫 ( 0 [,] 1 ) ) |
| 33 | 32 | elpwid | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ⊆ ( 0 [,] 1 ) ) |
| 34 | 33 | sseld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 35 | 28 34 | embantd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 36 | 35 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 37 | 4 36 | mpd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) |
| 38 | ffnfv | ⊢ ( 𝐹 : 𝑆 ⟶ ( 0 [,] 1 ) ↔ ( 𝐹 Fn 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) | |
| 39 | 3 37 38 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ( 0 [,] 1 ) ) |
| 40 | 39 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 41 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 42 | 40 41 | sstrdi | ⊢ ( 𝜑 → ran 𝐹 ⊆ ℝ ) |
| 43 | reex | ⊢ ℝ ∈ V | |
| 44 | 43 | elpw2 | ⊢ ( ran 𝐹 ∈ 𝒫 ℝ ↔ ran 𝐹 ⊆ ℝ ) |
| 45 | 42 44 | sylibr | ⊢ ( 𝜑 → ran 𝐹 ∈ 𝒫 ℝ ) |
| 46 | 45 | anim1i | ⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ∈ dom vol ) → ( ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol ) ) |
| 47 | eldif | ⊢ ( ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ↔ ( ran 𝐹 ∈ 𝒫 ℝ ∧ ¬ ran 𝐹 ∈ dom vol ) ) | |
| 48 | 46 47 | sylibr | ⊢ ( ( 𝜑 ∧ ¬ ran 𝐹 ∈ dom vol ) → ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) |
| 49 | 48 | ex | ⊢ ( 𝜑 → ( ¬ ran 𝐹 ∈ dom vol → ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) |
| 50 | 7 49 | mt3d | ⊢ ( 𝜑 → ran 𝐹 ∈ dom vol ) |
| 51 | f1of | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 52 | 5 51 | syl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 53 | inss1 | ⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℚ | |
| 54 | qssre | ⊢ ℚ ⊆ ℝ | |
| 55 | 53 54 | sstri | ⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℝ |
| 56 | fss | ⊢ ( ( 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℝ ) → 𝐺 : ℕ ⟶ ℝ ) | |
| 57 | 52 55 56 | sylancl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℝ ) |
| 58 | 57 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) |
| 59 | shftmbl | ⊢ ( ( ran 𝐹 ∈ dom vol ∧ ( 𝐺 ‘ 𝑛 ) ∈ ℝ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ∈ dom vol ) | |
| 60 | 50 58 59 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ∈ dom vol ) |
| 61 | 60 6 | fmptd | ⊢ ( 𝜑 → 𝑇 : ℕ ⟶ dom vol ) |
| 62 | 61 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 63 | 62 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 64 | iunmbl | ⊢ ( ∀ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) | |
| 65 | 63 64 | syl | ⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol ) |
| 66 | mblss | ⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) | |
| 67 | 65 66 | syl | ⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) |
| 68 | ovolss | ⊢ ( ( ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) → ( vol* ‘ ( 0 [,] 1 ) ) ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) | |
| 69 | 21 67 68 | syl2anc | ⊢ ( 𝜑 → ( vol* ‘ ( 0 [,] 1 ) ) ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 70 | eqid | ⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) | |
| 71 | eqid | ⊢ ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) | |
| 72 | mblss | ⊢ ( ( 𝑇 ‘ 𝑚 ) ∈ dom vol → ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) | |
| 73 | 62 72 | syl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) ⊆ ℝ ) |
| 74 | 1 2 3 4 5 6 7 | vitalilem4 | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = 0 ) |
| 75 | 74 9 | eqeltrdi | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ ) |
| 76 | 74 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( 𝑚 ∈ ℕ ↦ 0 ) ) |
| 77 | fconstmpt | ⊢ ( ℕ × { 0 } ) = ( 𝑚 ∈ ℕ ↦ 0 ) | |
| 78 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 79 | 78 | xpeq1i | ⊢ ( ℕ × { 0 } ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) |
| 80 | 77 79 | eqtr3i | ⊢ ( 𝑚 ∈ ℕ ↦ 0 ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) |
| 81 | 76 80 | eqtrdi | ⊢ ( 𝜑 → ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) = ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) |
| 82 | 81 | seqeq3d | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) = seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ) |
| 83 | 1z | ⊢ 1 ∈ ℤ | |
| 84 | serclim0 | ⊢ ( 1 ∈ ℤ → seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 ) | |
| 85 | 83 84 | ax-mp | ⊢ seq 1 ( + , ( ( ℤ≥ ‘ 1 ) × { 0 } ) ) ⇝ 0 |
| 86 | 82 85 | eqbrtrdi | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⇝ 0 ) |
| 87 | seqex | ⊢ seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ V | |
| 88 | c0ex | ⊢ 0 ∈ V | |
| 89 | 87 88 | breldm | ⊢ ( seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ⇝ 0 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 90 | 86 89 | syl | ⊢ ( 𝜑 → seq 1 ( + , ( 𝑚 ∈ ℕ ↦ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) ) ∈ dom ⇝ ) |
| 91 | 70 71 73 75 90 | ovoliun2 | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ Σ 𝑚 ∈ ℕ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) ) |
| 92 | 74 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = Σ 𝑚 ∈ ℕ 0 ) |
| 93 | 78 | eqimssi | ⊢ ℕ ⊆ ( ℤ≥ ‘ 1 ) |
| 94 | 93 | orci | ⊢ ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) |
| 95 | sumz | ⊢ ( ( ℕ ⊆ ( ℤ≥ ‘ 1 ) ∨ ℕ ∈ Fin ) → Σ 𝑚 ∈ ℕ 0 = 0 ) | |
| 96 | 94 95 | ax-mp | ⊢ Σ 𝑚 ∈ ℕ 0 = 0 |
| 97 | 92 96 | eqtrdi | ⊢ ( 𝜑 → Σ 𝑚 ∈ ℕ ( vol* ‘ ( 𝑇 ‘ 𝑚 ) ) = 0 ) |
| 98 | 91 97 | breqtrd | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 0 ) |
| 99 | ovolge0 | ⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ → 0 ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) | |
| 100 | 67 99 | syl | ⊢ ( 𝜑 → 0 ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 101 | ovolcl | ⊢ ( ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ℝ → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) | |
| 102 | 67 101 | syl | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ) |
| 103 | 0xr | ⊢ 0 ∈ ℝ* | |
| 104 | xrletri3 | ⊢ ( ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ∈ ℝ* ∧ 0 ∈ ℝ* ) → ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = 0 ↔ ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) ) ) | |
| 105 | 102 103 104 | sylancl | ⊢ ( 𝜑 → ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = 0 ↔ ( ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ≤ 0 ∧ 0 ≤ ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) ) ) |
| 106 | 98 100 105 | mpbir2and | ⊢ ( 𝜑 → ( vol* ‘ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) = 0 ) |
| 107 | 69 106 | breqtrd | ⊢ ( 𝜑 → ( vol* ‘ ( 0 [,] 1 ) ) ≤ 0 ) |
| 108 | 19 107 | mto | ⊢ ¬ 𝜑 |