This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: 'Less than' is transitive. Theorem I.17 of Apostol p. 20. (Contributed by NM, 14-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| lt.2 | ⊢ 𝐵 ∈ ℝ | ||
| lt.3 | ⊢ 𝐶 ∈ ℝ | ||
| Assertion | lttri | ⊢ ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lt.1 | ⊢ 𝐴 ∈ ℝ | |
| 2 | lt.2 | ⊢ 𝐵 ∈ ℝ | |
| 3 | lt.3 | ⊢ 𝐶 ∈ ℝ | |
| 4 | lttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ ) → ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) ) | |
| 5 | 1 2 3 4 | mp3an | ⊢ ( ( 𝐴 < 𝐵 ∧ 𝐵 < 𝐶 ) → 𝐴 < 𝐶 ) |