This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Lebesgue outer measure function is shift-invariant. (Contributed by Mario Carneiro, 22-Mar-2014) (Proof shortened by AV, 17-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovolshft.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| ovolshft.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | ||
| ovolshft.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) | ||
| Assertion | ovolshft | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = ( vol* ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovolshft.1 | ⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) | |
| 2 | ovolshft.2 | ⊢ ( 𝜑 → 𝐶 ∈ ℝ ) | |
| 3 | ovolshft.3 | ⊢ ( 𝜑 → 𝐵 = { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ) | |
| 4 | eqid | ⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } | |
| 5 | 1 2 3 4 | ovolshftlem2 | ⊢ ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ⊆ { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ) |
| 6 | ssrab2 | ⊢ { 𝑥 ∈ ℝ ∣ ( 𝑥 − 𝐶 ) ∈ 𝐴 } ⊆ ℝ | |
| 7 | 3 6 | eqsstrdi | ⊢ ( 𝜑 → 𝐵 ⊆ ℝ ) |
| 8 | 2 | renegcld | ⊢ ( 𝜑 → - 𝐶 ∈ ℝ ) |
| 9 | 1 2 3 | shft2rab | ⊢ ( 𝜑 → 𝐴 = { 𝑤 ∈ ℝ ∣ ( 𝑤 − - 𝐶 ) ∈ 𝐵 } ) |
| 10 | eqid | ⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } | |
| 11 | 7 8 9 10 | ovolshftlem2 | ⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ⊆ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ) |
| 12 | 5 11 | eqssd | ⊢ ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } ) |
| 13 | 12 | infeq1d | ⊢ ( 𝜑 → inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) = inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
| 14 | 10 | ovolval | ⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
| 15 | 1 14 | syl | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
| 16 | 4 | ovolval | ⊢ ( 𝐵 ⊆ ℝ → ( vol* ‘ 𝐵 ) = inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
| 17 | 7 16 | syl | ⊢ ( 𝜑 → ( vol* ‘ 𝐵 ) = inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑔 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐵 ⊆ ∪ ran ( (,) ∘ 𝑔 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑔 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
| 18 | 13 15 17 | 3eqtr4d | ⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = ( vol* ‘ 𝐵 ) ) |