This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| vitali.2 | ⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) | ||
| vitali.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) | ||
| vitali.4 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) | ||
| vitali.5 | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | ||
| vitali.6 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) | ||
| vitali.7 | ⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) | ||
| Assertion | vitalilem3 | ⊢ ( 𝜑 → Disj 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| 2 | vitali.2 | ⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) | |
| 3 | vitali.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) | |
| 4 | vitali.4 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 5 | vitali.5 | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 6 | vitali.6 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) | |
| 7 | vitali.7 | ⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) | |
| 8 | simprlr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) | |
| 9 | simprll | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝑚 ∈ ℕ ) | |
| 10 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑚 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) = ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ) |
| 12 | 11 | eleq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 ↔ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 13 | 12 | rabbidv | ⊢ ( 𝑛 = 𝑚 → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 14 | reex | ⊢ ℝ ∈ V | |
| 15 | 14 | rabex | ⊢ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ∈ V |
| 16 | 13 6 15 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 17 | 9 16 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 18 | 8 17 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝑤 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 19 | oveq1 | ⊢ ( 𝑠 = 𝑤 → ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ) | |
| 20 | 19 | eleq1d | ⊢ ( 𝑠 = 𝑤 → ( ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ↔ ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 21 | 20 | elrab | ⊢ ( 𝑤 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ↔ ( 𝑤 ∈ ℝ ∧ ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 22 | 18 21 | sylib | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑤 ∈ ℝ ∧ ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 23 | 22 | simpld | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝑤 ∈ ℝ ) |
| 24 | 23 | recnd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝑤 ∈ ℂ ) |
| 25 | f1of | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 26 | 5 25 | syl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 27 | inss1 | ⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℚ | |
| 28 | fss | ⊢ ( ( 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℚ ) → 𝐺 : ℕ ⟶ ℚ ) | |
| 29 | 26 27 28 | sylancl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ℚ ) |
| 30 | 29 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝐺 : ℕ ⟶ ℚ ) |
| 31 | 30 9 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ℚ ) |
| 32 | qcn | ⊢ ( ( 𝐺 ‘ 𝑚 ) ∈ ℚ → ( 𝐺 ‘ 𝑚 ) ∈ ℂ ) | |
| 33 | 31 32 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ℂ ) |
| 34 | simprrl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝑘 ∈ ℕ ) | |
| 35 | 30 34 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℚ ) |
| 36 | qcn | ⊢ ( ( 𝐺 ‘ 𝑘 ) ∈ ℚ → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) | |
| 37 | 35 36 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝐺 ‘ 𝑘 ) ∈ ℂ ) |
| 38 | 1 | vitalilem1 | ⊢ ∼ Er ( 0 [,] 1 ) |
| 39 | 38 | a1i | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ∼ Er ( 0 [,] 1 ) ) |
| 40 | 1 2 3 4 5 6 7 | vitalilem2 | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) ) |
| 41 | 40 | simp1d | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 42 | 41 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 43 | 22 | simprd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) |
| 44 | 42 43 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∈ ( 0 [,] 1 ) ) |
| 45 | simprrr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) | |
| 46 | fveq2 | ⊢ ( 𝑛 = 𝑘 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑘 ) ) | |
| 47 | 46 | oveq2d | ⊢ ( 𝑛 = 𝑘 → ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) = ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) ) |
| 48 | 47 | eleq1d | ⊢ ( 𝑛 = 𝑘 → ( ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 ↔ ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 ) ) |
| 49 | 48 | rabbidv | ⊢ ( 𝑛 = 𝑘 → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 } ) |
| 50 | 14 | rabex | ⊢ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 } ∈ V |
| 51 | 49 6 50 | fvmpt | ⊢ ( 𝑘 ∈ ℕ → ( 𝑇 ‘ 𝑘 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 } ) |
| 52 | 34 51 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑇 ‘ 𝑘 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 } ) |
| 53 | 45 52 | eleqtrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝑤 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 } ) |
| 54 | oveq1 | ⊢ ( 𝑠 = 𝑤 → ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) | |
| 55 | 54 | eleq1d | ⊢ ( 𝑠 = 𝑤 → ( ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 ↔ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 ) ) |
| 56 | 55 | elrab | ⊢ ( 𝑤 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 } ↔ ( 𝑤 ∈ ℝ ∧ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 ) ) |
| 57 | 53 56 | sylib | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑤 ∈ ℝ ∧ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 ) ) |
| 58 | 57 | simprd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ∈ ran 𝐹 ) |
| 59 | 42 58 | sseldd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ∈ ( 0 [,] 1 ) ) |
| 60 | 24 33 37 | nnncan1d | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) − ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) = ( ( 𝐺 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑚 ) ) ) |
| 61 | qsubcl | ⊢ ( ( ( 𝐺 ‘ 𝑘 ) ∈ ℚ ∧ ( 𝐺 ‘ 𝑚 ) ∈ ℚ ) → ( ( 𝐺 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑚 ) ) ∈ ℚ ) | |
| 62 | 35 31 61 | syl2anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( ( 𝐺 ‘ 𝑘 ) − ( 𝐺 ‘ 𝑚 ) ) ∈ ℚ ) |
| 63 | 60 62 | eqeltrd | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) − ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℚ ) |
| 64 | oveq12 | ⊢ ( ( 𝑥 = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∧ 𝑦 = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) → ( 𝑥 − 𝑦 ) = ( ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) − ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) ) | |
| 65 | 64 | eleq1d | ⊢ ( ( 𝑥 = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∧ 𝑦 = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) − ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℚ ) ) |
| 66 | 65 1 | brab2a | ⊢ ( ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∼ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ↔ ( ( ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∈ ( 0 [,] 1 ) ∧ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ∈ ( 0 [,] 1 ) ) ∧ ( ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) − ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) ∈ ℚ ) ) |
| 67 | 44 59 63 66 | syl21anbrc | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ∼ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) |
| 68 | 39 67 | erthi | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → [ ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ] ∼ = [ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ] ∼ ) |
| 69 | 68 | fveq2d | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝐹 ‘ [ ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ] ∼ ) = ( 𝐹 ‘ [ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ] ∼ ) ) |
| 70 | eceq1 | ⊢ ( 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) → [ 𝑧 ] ∼ = [ ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ] ∼ ) | |
| 71 | 70 | fveq2d | ⊢ ( 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) → ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ] ∼ ) ) |
| 72 | id | ⊢ ( 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) → 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ) | |
| 73 | 71 72 | eqeq12d | ⊢ ( 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = 𝑧 ↔ ( 𝐹 ‘ [ ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ] ∼ ) = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ) ) |
| 74 | fveq2 | ⊢ ( [ 𝑣 ] ∼ = 𝑤 → ( 𝐹 ‘ [ 𝑣 ] ∼ ) = ( 𝐹 ‘ 𝑤 ) ) | |
| 75 | 74 | eceq1d | ⊢ ( [ 𝑣 ] ∼ = 𝑤 → [ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ] ∼ = [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) |
| 76 | 75 | fveq2d | ⊢ ( [ 𝑣 ] ∼ = 𝑤 → ( 𝐹 ‘ [ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ] ∼ ) = ( 𝐹 ‘ [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) ) |
| 77 | 76 74 | eqeq12d | ⊢ ( [ 𝑣 ] ∼ = 𝑤 → ( ( 𝐹 ‘ [ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ] ∼ ) = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ↔ ( 𝐹 ‘ [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 78 | 38 | a1i | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ∼ Er ( 0 [,] 1 ) ) |
| 79 | simpr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ( 0 [,] 1 ) ) | |
| 80 | erdm | ⊢ ( ∼ Er ( 0 [,] 1 ) → dom ∼ = ( 0 [,] 1 ) ) | |
| 81 | 38 80 | ax-mp | ⊢ dom ∼ = ( 0 [,] 1 ) |
| 82 | 81 | eleq2i | ⊢ ( 𝑣 ∈ dom ∼ ↔ 𝑣 ∈ ( 0 [,] 1 ) ) |
| 83 | ecdmn0 | ⊢ ( 𝑣 ∈ dom ∼ ↔ [ 𝑣 ] ∼ ≠ ∅ ) | |
| 84 | 82 83 | bitr3i | ⊢ ( 𝑣 ∈ ( 0 [,] 1 ) ↔ [ 𝑣 ] ∼ ≠ ∅ ) |
| 85 | 79 84 | sylib | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ 𝑣 ] ∼ ≠ ∅ ) |
| 86 | neeq1 | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( 𝑧 ≠ ∅ ↔ [ 𝑣 ] ∼ ≠ ∅ ) ) | |
| 87 | fveq2 | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) | |
| 88 | id | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → 𝑧 = [ 𝑣 ] ∼ ) | |
| 89 | 87 88 | eleq12d | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) ) |
| 90 | 86 89 | imbi12d | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( [ 𝑣 ] ∼ ≠ ∅ → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) ) ) |
| 91 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 92 | ovex | ⊢ ( 0 [,] 1 ) ∈ V | |
| 93 | erex | ⊢ ( ∼ Er ( 0 [,] 1 ) → ( ( 0 [,] 1 ) ∈ V → ∼ ∈ V ) ) | |
| 94 | 38 92 93 | mp2 | ⊢ ∼ ∈ V |
| 95 | 94 | ecelqsi | ⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → [ 𝑣 ] ∼ ∈ ( ( 0 [,] 1 ) / ∼ ) ) |
| 96 | 95 2 | eleqtrrdi | ⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → [ 𝑣 ] ∼ ∈ 𝑆 ) |
| 97 | 96 | adantl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ 𝑣 ] ∼ ∈ 𝑆 ) |
| 98 | 90 91 97 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( [ 𝑣 ] ∼ ≠ ∅ → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) ) |
| 99 | 85 98 | mpd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) |
| 100 | fvex | ⊢ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ V | |
| 101 | vex | ⊢ 𝑣 ∈ V | |
| 102 | 100 101 | elec | ⊢ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ↔ 𝑣 ∼ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 103 | 99 102 | sylib | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∼ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 104 | 78 103 | erthi | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ 𝑣 ] ∼ = [ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ] ∼ ) |
| 105 | 104 | eqcomd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ] ∼ = [ 𝑣 ] ∼ ) |
| 106 | 105 | fveq2d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ] ∼ ) = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 107 | 2 77 106 | ectocld | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑆 ) → ( 𝐹 ‘ [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) = ( 𝐹 ‘ 𝑤 ) ) |
| 108 | 107 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑤 ∈ 𝑆 ( 𝐹 ‘ [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) = ( 𝐹 ‘ 𝑤 ) ) |
| 109 | eceq1 | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → [ 𝑧 ] ∼ = [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) | |
| 110 | 109 | fveq2d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) ) |
| 111 | id | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → 𝑧 = ( 𝐹 ‘ 𝑤 ) ) | |
| 112 | 110 111 | eqeq12d | ⊢ ( 𝑧 = ( 𝐹 ‘ 𝑤 ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = 𝑧 ↔ ( 𝐹 ‘ [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 113 | 112 | ralrn | ⊢ ( 𝐹 Fn 𝑆 → ( ∀ 𝑧 ∈ ran 𝐹 ( 𝐹 ‘ [ 𝑧 ] ∼ ) = 𝑧 ↔ ∀ 𝑤 ∈ 𝑆 ( 𝐹 ‘ [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 114 | 3 113 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ ran 𝐹 ( 𝐹 ‘ [ 𝑧 ] ∼ ) = 𝑧 ↔ ∀ 𝑤 ∈ 𝑆 ( 𝐹 ‘ [ ( 𝐹 ‘ 𝑤 ) ] ∼ ) = ( 𝐹 ‘ 𝑤 ) ) ) |
| 115 | 108 114 | mpbird | ⊢ ( 𝜑 → ∀ 𝑧 ∈ ran 𝐹 ( 𝐹 ‘ [ 𝑧 ] ∼ ) = 𝑧 ) |
| 116 | 115 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ∀ 𝑧 ∈ ran 𝐹 ( 𝐹 ‘ [ 𝑧 ] ∼ ) = 𝑧 ) |
| 117 | 73 116 43 | rspcdva | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝐹 ‘ [ ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ] ∼ ) = ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) ) |
| 118 | eceq1 | ⊢ ( 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) → [ 𝑧 ] ∼ = [ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ] ∼ ) | |
| 119 | 118 | fveq2d | ⊢ ( 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) → ( 𝐹 ‘ [ 𝑧 ] ∼ ) = ( 𝐹 ‘ [ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ] ∼ ) ) |
| 120 | id | ⊢ ( 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) → 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) | |
| 121 | 119 120 | eqeq12d | ⊢ ( 𝑧 = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) → ( ( 𝐹 ‘ [ 𝑧 ] ∼ ) = 𝑧 ↔ ( 𝐹 ‘ [ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ] ∼ ) = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) ) |
| 122 | 121 116 58 | rspcdva | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝐹 ‘ [ ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ] ∼ ) = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) |
| 123 | 69 117 122 | 3eqtr3d | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝑤 − ( 𝐺 ‘ 𝑚 ) ) = ( 𝑤 − ( 𝐺 ‘ 𝑘 ) ) ) |
| 124 | 24 33 37 123 | subcand | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑘 ) ) |
| 125 | 5 | adantr | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 126 | f1of1 | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → 𝐺 : ℕ –1-1→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 127 | 125 126 | syl | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝐺 : ℕ –1-1→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 128 | f1fveq | ⊢ ( ( 𝐺 : ℕ –1-1→ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ( 𝑚 ∈ ℕ ∧ 𝑘 ∈ ℕ ) ) → ( ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑘 ) ↔ 𝑚 = 𝑘 ) ) | |
| 129 | 127 9 34 128 | syl12anc | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → ( ( 𝐺 ‘ 𝑚 ) = ( 𝐺 ‘ 𝑘 ) ↔ 𝑚 = 𝑘 ) ) |
| 130 | 124 129 | mpbid | ⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) → 𝑚 = 𝑘 ) |
| 131 | 130 | ex | ⊢ ( 𝜑 → ( ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) → 𝑚 = 𝑘 ) ) |
| 132 | 131 | alrimivv | ⊢ ( 𝜑 → ∀ 𝑚 ∀ 𝑘 ( ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) → 𝑚 = 𝑘 ) ) |
| 133 | eleq1w | ⊢ ( 𝑚 = 𝑘 → ( 𝑚 ∈ ℕ ↔ 𝑘 ∈ ℕ ) ) | |
| 134 | fveq2 | ⊢ ( 𝑚 = 𝑘 → ( 𝑇 ‘ 𝑚 ) = ( 𝑇 ‘ 𝑘 ) ) | |
| 135 | 134 | eleq2d | ⊢ ( 𝑚 = 𝑘 → ( 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ↔ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) |
| 136 | 133 135 | anbi12d | ⊢ ( 𝑚 = 𝑘 → ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ↔ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) ) |
| 137 | 136 | mo4 | ⊢ ( ∃* 𝑚 ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ↔ ∀ 𝑚 ∀ 𝑘 ( ( ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ∧ ( 𝑘 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑘 ) ) ) → 𝑚 = 𝑘 ) ) |
| 138 | 132 137 | sylibr | ⊢ ( 𝜑 → ∃* 𝑚 ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ) |
| 139 | 138 | alrimiv | ⊢ ( 𝜑 → ∀ 𝑤 ∃* 𝑚 ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ) |
| 140 | dfdisj2 | ⊢ ( Disj 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ↔ ∀ 𝑤 ∃* 𝑚 ( 𝑚 ∈ ℕ ∧ 𝑤 ∈ ( 𝑇 ‘ 𝑚 ) ) ) | |
| 141 | 139 140 | sylibr | ⊢ ( 𝜑 → Disj 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |