This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The measure of a closed interval. (Contributed by Mario Carneiro, 14-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ovolicc | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iccssre | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) | |
| 2 | 1 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 [,] 𝐵 ) ⊆ ℝ ) |
| 3 | ovolcl | ⊢ ( ( 𝐴 [,] 𝐵 ) ⊆ ℝ → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ* ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ∈ ℝ* ) |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 6 | simp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ∈ ℝ ) | |
| 7 | 5 6 | resubcld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ ) |
| 8 | 7 | rexrd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 − 𝐴 ) ∈ ℝ* ) |
| 9 | simp3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ 𝐵 ) | |
| 10 | eqeq1 | ⊢ ( 𝑚 = 𝑛 → ( 𝑚 = 1 ↔ 𝑛 = 1 ) ) | |
| 11 | 10 | ifbid | ⊢ ( 𝑚 = 𝑛 → if ( 𝑚 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) = if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
| 12 | 11 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ if ( 𝑚 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 = 1 , 〈 𝐴 , 𝐵 〉 , 〈 0 , 0 〉 ) ) |
| 13 | 6 5 9 12 | ovolicc1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ≤ ( 𝐵 − 𝐴 ) ) |
| 14 | eqeq1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ↔ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) | |
| 15 | 14 | anbi2d | ⊢ ( 𝑧 = 𝑦 → ( ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 16 | 15 | rexbidv | ⊢ ( 𝑧 = 𝑦 → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ) ) |
| 17 | 16 | cbvrabv | ⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑧 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( ( 𝐴 [,] 𝐵 ) ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
| 18 | 6 5 9 17 | ovolicc2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐵 − 𝐴 ) ≤ ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) ) |
| 19 | 4 8 13 18 | xrletrid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( vol* ‘ ( 𝐴 [,] 𝐵 ) ) = ( 𝐵 − 𝐴 ) ) |