This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the reals can be well-ordered, then there are non-measurable sets. The proof uses "Vitali sets", named for Giuseppe Vitali (1905). (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | vitali | ⊢ ( < We ℝ → dom vol ⊊ 𝒫 ℝ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reex | ⊢ ℝ ∈ V | |
| 2 | 1 | pwex | ⊢ 𝒫 ℝ ∈ V |
| 3 | weinxp | ⊢ ( < We ℝ ↔ ( < ∩ ( ℝ × ℝ ) ) We ℝ ) | |
| 4 | unipw | ⊢ ∪ 𝒫 ℝ = ℝ | |
| 5 | weeq2 | ⊢ ( ∪ 𝒫 ℝ = ℝ → ( ( < ∩ ( ℝ × ℝ ) ) We ∪ 𝒫 ℝ ↔ ( < ∩ ( ℝ × ℝ ) ) We ℝ ) ) | |
| 6 | 4 5 | ax-mp | ⊢ ( ( < ∩ ( ℝ × ℝ ) ) We ∪ 𝒫 ℝ ↔ ( < ∩ ( ℝ × ℝ ) ) We ℝ ) |
| 7 | 3 6 | bitr4i | ⊢ ( < We ℝ ↔ ( < ∩ ( ℝ × ℝ ) ) We ∪ 𝒫 ℝ ) |
| 8 | 1 1 | xpex | ⊢ ( ℝ × ℝ ) ∈ V |
| 9 | 8 | inex2 | ⊢ ( < ∩ ( ℝ × ℝ ) ) ∈ V |
| 10 | weeq1 | ⊢ ( 𝑥 = ( < ∩ ( ℝ × ℝ ) ) → ( 𝑥 We ∪ 𝒫 ℝ ↔ ( < ∩ ( ℝ × ℝ ) ) We ∪ 𝒫 ℝ ) ) | |
| 11 | 9 10 | spcev | ⊢ ( ( < ∩ ( ℝ × ℝ ) ) We ∪ 𝒫 ℝ → ∃ 𝑥 𝑥 We ∪ 𝒫 ℝ ) |
| 12 | 7 11 | sylbi | ⊢ ( < We ℝ → ∃ 𝑥 𝑥 We ∪ 𝒫 ℝ ) |
| 13 | dfac8c | ⊢ ( 𝒫 ℝ ∈ V → ( ∃ 𝑥 𝑥 We ∪ 𝒫 ℝ → ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ) | |
| 14 | 2 12 13 | mpsyl | ⊢ ( < We ℝ → ∃ 𝑓 ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 15 | qex | ⊢ ℚ ∈ V | |
| 16 | 15 | inex1 | ⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ∈ V |
| 17 | nnrecq | ⊢ ( 𝑥 ∈ ℕ → ( 1 / 𝑥 ) ∈ ℚ ) | |
| 18 | nnrecre | ⊢ ( 𝑥 ∈ ℕ → ( 1 / 𝑥 ) ∈ ℝ ) | |
| 19 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 20 | 19 | a1i | ⊢ ( 𝑥 ∈ ℕ → - 1 ∈ ℝ ) |
| 21 | 0re | ⊢ 0 ∈ ℝ | |
| 22 | 21 | a1i | ⊢ ( 𝑥 ∈ ℕ → 0 ∈ ℝ ) |
| 23 | neg1lt0 | ⊢ - 1 < 0 | |
| 24 | 19 21 23 | ltleii | ⊢ - 1 ≤ 0 |
| 25 | 24 | a1i | ⊢ ( 𝑥 ∈ ℕ → - 1 ≤ 0 ) |
| 26 | nnrp | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ+ ) | |
| 27 | 26 | rpreccld | ⊢ ( 𝑥 ∈ ℕ → ( 1 / 𝑥 ) ∈ ℝ+ ) |
| 28 | 27 | rpge0d | ⊢ ( 𝑥 ∈ ℕ → 0 ≤ ( 1 / 𝑥 ) ) |
| 29 | 20 22 18 25 28 | letrd | ⊢ ( 𝑥 ∈ ℕ → - 1 ≤ ( 1 / 𝑥 ) ) |
| 30 | nnge1 | ⊢ ( 𝑥 ∈ ℕ → 1 ≤ 𝑥 ) | |
| 31 | nnre | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) | |
| 32 | nngt0 | ⊢ ( 𝑥 ∈ ℕ → 0 < 𝑥 ) | |
| 33 | 1re | ⊢ 1 ∈ ℝ | |
| 34 | 0lt1 | ⊢ 0 < 1 | |
| 35 | lerec | ⊢ ( ( ( 1 ∈ ℝ ∧ 0 < 1 ) ∧ ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) ) → ( 1 ≤ 𝑥 ↔ ( 1 / 𝑥 ) ≤ ( 1 / 1 ) ) ) | |
| 36 | 33 34 35 | mpanl12 | ⊢ ( ( 𝑥 ∈ ℝ ∧ 0 < 𝑥 ) → ( 1 ≤ 𝑥 ↔ ( 1 / 𝑥 ) ≤ ( 1 / 1 ) ) ) |
| 37 | 31 32 36 | syl2anc | ⊢ ( 𝑥 ∈ ℕ → ( 1 ≤ 𝑥 ↔ ( 1 / 𝑥 ) ≤ ( 1 / 1 ) ) ) |
| 38 | 30 37 | mpbid | ⊢ ( 𝑥 ∈ ℕ → ( 1 / 𝑥 ) ≤ ( 1 / 1 ) ) |
| 39 | 1div1e1 | ⊢ ( 1 / 1 ) = 1 | |
| 40 | 38 39 | breqtrdi | ⊢ ( 𝑥 ∈ ℕ → ( 1 / 𝑥 ) ≤ 1 ) |
| 41 | 19 33 | elicc2i | ⊢ ( ( 1 / 𝑥 ) ∈ ( - 1 [,] 1 ) ↔ ( ( 1 / 𝑥 ) ∈ ℝ ∧ - 1 ≤ ( 1 / 𝑥 ) ∧ ( 1 / 𝑥 ) ≤ 1 ) ) |
| 42 | 18 29 40 41 | syl3anbrc | ⊢ ( 𝑥 ∈ ℕ → ( 1 / 𝑥 ) ∈ ( - 1 [,] 1 ) ) |
| 43 | 17 42 | elind | ⊢ ( 𝑥 ∈ ℕ → ( 1 / 𝑥 ) ∈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 44 | oveq2 | ⊢ ( ( 1 / 𝑥 ) = ( 1 / 𝑦 ) → ( 1 / ( 1 / 𝑥 ) ) = ( 1 / ( 1 / 𝑦 ) ) ) | |
| 45 | nncn | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℂ ) | |
| 46 | nnne0 | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ≠ 0 ) | |
| 47 | 45 46 | recrecd | ⊢ ( 𝑥 ∈ ℕ → ( 1 / ( 1 / 𝑥 ) ) = 𝑥 ) |
| 48 | nncn | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) | |
| 49 | nnne0 | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) | |
| 50 | 48 49 | recrecd | ⊢ ( 𝑦 ∈ ℕ → ( 1 / ( 1 / 𝑦 ) ) = 𝑦 ) |
| 51 | 47 50 | eqeqan12d | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 1 / ( 1 / 𝑥 ) ) = ( 1 / ( 1 / 𝑦 ) ) ↔ 𝑥 = 𝑦 ) ) |
| 52 | 44 51 | imbitrid | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 1 / 𝑥 ) = ( 1 / 𝑦 ) → 𝑥 = 𝑦 ) ) |
| 53 | oveq2 | ⊢ ( 𝑥 = 𝑦 → ( 1 / 𝑥 ) = ( 1 / 𝑦 ) ) | |
| 54 | 52 53 | impbid1 | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( 1 / 𝑥 ) = ( 1 / 𝑦 ) ↔ 𝑥 = 𝑦 ) ) |
| 55 | 43 54 | dom2 | ⊢ ( ( ℚ ∩ ( - 1 [,] 1 ) ) ∈ V → ℕ ≼ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 56 | 16 55 | ax-mp | ⊢ ℕ ≼ ( ℚ ∩ ( - 1 [,] 1 ) ) |
| 57 | inss1 | ⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℚ | |
| 58 | ssdomg | ⊢ ( ℚ ∈ V → ( ( ℚ ∩ ( - 1 [,] 1 ) ) ⊆ ℚ → ( ℚ ∩ ( - 1 [,] 1 ) ) ≼ ℚ ) ) | |
| 59 | 15 57 58 | mp2 | ⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ≼ ℚ |
| 60 | qnnen | ⊢ ℚ ≈ ℕ | |
| 61 | domentr | ⊢ ( ( ( ℚ ∩ ( - 1 [,] 1 ) ) ≼ ℚ ∧ ℚ ≈ ℕ ) → ( ℚ ∩ ( - 1 [,] 1 ) ) ≼ ℕ ) | |
| 62 | 59 60 61 | mp2an | ⊢ ( ℚ ∩ ( - 1 [,] 1 ) ) ≼ ℕ |
| 63 | sbth | ⊢ ( ( ℕ ≼ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ( ℚ ∩ ( - 1 [,] 1 ) ) ≼ ℕ ) → ℕ ≈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 64 | 56 62 63 | mp2an | ⊢ ℕ ≈ ( ℚ ∩ ( - 1 [,] 1 ) ) |
| 65 | bren | ⊢ ( ℕ ≈ ( ℚ ∩ ( - 1 [,] 1 ) ) ↔ ∃ 𝑔 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 66 | 64 65 | mpbi | ⊢ ∃ 𝑔 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) |
| 67 | eleq1w | ⊢ ( 𝑎 = 𝑥 → ( 𝑎 ∈ ( 0 [,] 1 ) ↔ 𝑥 ∈ ( 0 [,] 1 ) ) ) | |
| 68 | eleq1w | ⊢ ( 𝑏 = 𝑦 → ( 𝑏 ∈ ( 0 [,] 1 ) ↔ 𝑦 ∈ ( 0 [,] 1 ) ) ) | |
| 69 | 67 68 | bi2anan9 | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ↔ ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ) ) |
| 70 | oveq12 | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( 𝑎 − 𝑏 ) = ( 𝑥 − 𝑦 ) ) | |
| 71 | 70 | eleq1d | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( 𝑎 − 𝑏 ) ∈ ℚ ↔ ( 𝑥 − 𝑦 ) ∈ ℚ ) ) |
| 72 | 69 71 | anbi12d | ⊢ ( ( 𝑎 = 𝑥 ∧ 𝑏 = 𝑦 ) → ( ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) ↔ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) ) ) |
| 73 | 72 | cbvopabv | ⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } |
| 74 | eqid | ⊢ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) = ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) | |
| 75 | fvex | ⊢ ( 𝑓 ‘ 𝑐 ) ∈ V | |
| 76 | eqid | ⊢ ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) = ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) | |
| 77 | 75 76 | fnmpti | ⊢ ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) Fn ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) |
| 78 | 77 | a1i | ⊢ ( ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ ( 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) → ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) Fn ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ) |
| 79 | neeq1 | ⊢ ( 𝑧 = 𝑤 → ( 𝑧 ≠ ∅ ↔ 𝑤 ≠ ∅ ) ) | |
| 80 | fveq2 | ⊢ ( 𝑧 = 𝑤 → ( 𝑓 ‘ 𝑧 ) = ( 𝑓 ‘ 𝑤 ) ) | |
| 81 | id | ⊢ ( 𝑧 = 𝑤 → 𝑧 = 𝑤 ) | |
| 82 | 80 81 | eleq12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 83 | 79 82 | imbi12d | ⊢ ( 𝑧 = 𝑤 → ( ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) ) |
| 84 | 83 | cbvralvw | ⊢ ( ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ∀ 𝑤 ∈ 𝒫 ℝ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 85 | 73 | vitalilem1 | ⊢ { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } Er ( 0 [,] 1 ) |
| 86 | 85 | a1i | ⊢ ( ⊤ → { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } Er ( 0 [,] 1 ) ) |
| 87 | 86 | qsss | ⊢ ( ⊤ → ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ⊆ 𝒫 ( 0 [,] 1 ) ) |
| 88 | 87 | mptru | ⊢ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ⊆ 𝒫 ( 0 [,] 1 ) |
| 89 | unitssre | ⊢ ( 0 [,] 1 ) ⊆ ℝ | |
| 90 | 89 | sspwi | ⊢ 𝒫 ( 0 [,] 1 ) ⊆ 𝒫 ℝ |
| 91 | 88 90 | sstri | ⊢ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ⊆ 𝒫 ℝ |
| 92 | ssralv | ⊢ ( ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ⊆ 𝒫 ℝ → ( ∀ 𝑤 ∈ 𝒫 ℝ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) → ∀ 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) ) | |
| 93 | 91 92 | ax-mp | ⊢ ( ∀ 𝑤 ∈ 𝒫 ℝ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) → ∀ 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 94 | 84 93 | sylbi | ⊢ ( ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 95 | fveq2 | ⊢ ( 𝑐 = 𝑤 → ( 𝑓 ‘ 𝑐 ) = ( 𝑓 ‘ 𝑤 ) ) | |
| 96 | fvex | ⊢ ( 𝑓 ‘ 𝑤 ) ∈ V | |
| 97 | 95 76 96 | fvmpt | ⊢ ( 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) → ( ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 ) = ( 𝑓 ‘ 𝑤 ) ) |
| 98 | 97 | eleq1d | ⊢ ( 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) → ( ( ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 ) ∈ 𝑤 ↔ ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 99 | 98 | imbi2d | ⊢ ( 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) → ( ( 𝑤 ≠ ∅ → ( ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 ) ∈ 𝑤 ) ↔ ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) ) |
| 100 | 99 | ralbiia | ⊢ ( ∀ 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ( 𝑤 ≠ ∅ → ( ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 ) ∈ 𝑤 ) ↔ ∀ 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ( 𝑤 ≠ ∅ → ( 𝑓 ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 101 | 94 100 | sylibr | ⊢ ( ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ( 𝑤 ≠ ∅ → ( ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 102 | 101 | ad2antlr | ⊢ ( ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ ( 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) → ∀ 𝑤 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ( 𝑤 ≠ ∅ → ( ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ‘ 𝑤 ) ∈ 𝑤 ) ) |
| 103 | simprl | ⊢ ( ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ ( 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) → 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 104 | oveq1 | ⊢ ( 𝑡 = 𝑠 → ( 𝑡 − ( 𝑔 ‘ 𝑚 ) ) = ( 𝑠 − ( 𝑔 ‘ 𝑚 ) ) ) | |
| 105 | 104 | eleq1d | ⊢ ( 𝑡 = 𝑠 → ( ( 𝑡 − ( 𝑔 ‘ 𝑚 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ↔ ( 𝑠 − ( 𝑔 ‘ 𝑚 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ) ) |
| 106 | 105 | cbvrabv | ⊢ { 𝑡 ∈ ℝ ∣ ( 𝑡 − ( 𝑔 ‘ 𝑚 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝑔 ‘ 𝑚 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) } |
| 107 | fveq2 | ⊢ ( 𝑚 = 𝑛 → ( 𝑔 ‘ 𝑚 ) = ( 𝑔 ‘ 𝑛 ) ) | |
| 108 | 107 | oveq2d | ⊢ ( 𝑚 = 𝑛 → ( 𝑠 − ( 𝑔 ‘ 𝑚 ) ) = ( 𝑠 − ( 𝑔 ‘ 𝑛 ) ) ) |
| 109 | 108 | eleq1d | ⊢ ( 𝑚 = 𝑛 → ( ( 𝑠 − ( 𝑔 ‘ 𝑚 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ↔ ( 𝑠 − ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ) ) |
| 110 | 109 | rabbidv | ⊢ ( 𝑚 = 𝑛 → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝑔 ‘ 𝑚 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) } ) |
| 111 | 106 110 | eqtrid | ⊢ ( 𝑚 = 𝑛 → { 𝑡 ∈ ℝ ∣ ( 𝑡 − ( 𝑔 ‘ 𝑚 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) } ) |
| 112 | 111 | cbvmptv | ⊢ ( 𝑚 ∈ ℕ ↦ { 𝑡 ∈ ℝ ∣ ( 𝑡 − ( 𝑔 ‘ 𝑚 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) } ) = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝑔 ‘ 𝑛 ) ) ∈ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) } ) |
| 113 | simprr | ⊢ ( ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ ( 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) → ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) | |
| 114 | 73 74 78 102 103 112 113 | vitalilem5 | ⊢ ¬ ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ ( 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) |
| 115 | 114 | pm2.21i | ⊢ ( ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ ( 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) → ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) |
| 116 | 115 | expr | ⊢ ( ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) → ( ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) → ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) ) |
| 117 | 116 | pm2.18d | ⊢ ( ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) → ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ) |
| 118 | eldif | ⊢ ( ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) ↔ ( ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ 𝒫 ℝ ∧ ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ dom vol ) ) | |
| 119 | mblss | ⊢ ( 𝑥 ∈ dom vol → 𝑥 ⊆ ℝ ) | |
| 120 | velpw | ⊢ ( 𝑥 ∈ 𝒫 ℝ ↔ 𝑥 ⊆ ℝ ) | |
| 121 | 119 120 | sylibr | ⊢ ( 𝑥 ∈ dom vol → 𝑥 ∈ 𝒫 ℝ ) |
| 122 | 121 | ssriv | ⊢ dom vol ⊆ 𝒫 ℝ |
| 123 | ssnelpss | ⊢ ( dom vol ⊆ 𝒫 ℝ → ( ( ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ 𝒫 ℝ ∧ ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ dom vol ) → dom vol ⊊ 𝒫 ℝ ) ) | |
| 124 | 122 123 | ax-mp | ⊢ ( ( ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ 𝒫 ℝ ∧ ¬ ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ dom vol ) → dom vol ⊊ 𝒫 ℝ ) |
| 125 | 118 124 | sylbi | ⊢ ( ran ( 𝑐 ∈ ( ( 0 [,] 1 ) / { 〈 𝑎 , 𝑏 〉 ∣ ( ( 𝑎 ∈ ( 0 [,] 1 ) ∧ 𝑏 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑎 − 𝑏 ) ∈ ℚ ) } ) ↦ ( 𝑓 ‘ 𝑐 ) ) ∈ ( 𝒫 ℝ ∖ dom vol ) → dom vol ⊊ 𝒫 ℝ ) |
| 126 | 117 125 | syl | ⊢ ( ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) ∧ 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) → dom vol ⊊ 𝒫 ℝ ) |
| 127 | 126 | ex | ⊢ ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → dom vol ⊊ 𝒫 ℝ ) ) |
| 128 | 127 | exlimdv | ⊢ ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → ( ∃ 𝑔 𝑔 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → dom vol ⊊ 𝒫 ℝ ) ) |
| 129 | 66 128 | mpi | ⊢ ( ( < We ℝ ∧ ∀ 𝑧 ∈ 𝒫 ℝ ( 𝑧 ≠ ∅ → ( 𝑓 ‘ 𝑧 ) ∈ 𝑧 ) ) → dom vol ⊊ 𝒫 ℝ ) |
| 130 | 14 129 | exlimddv | ⊢ ( < We ℝ → dom vol ⊊ 𝒫 ℝ ) |