This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| vitali.2 | ⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) | ||
| vitali.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) | ||
| vitali.4 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) | ||
| vitali.5 | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | ||
| vitali.6 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) | ||
| vitali.7 | ⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) | ||
| Assertion | vitalilem2 | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | ⊢ ∼ = { 〈 𝑥 , 𝑦 〉 ∣ ( ( 𝑥 ∈ ( 0 [,] 1 ) ∧ 𝑦 ∈ ( 0 [,] 1 ) ) ∧ ( 𝑥 − 𝑦 ) ∈ ℚ ) } | |
| 2 | vitali.2 | ⊢ 𝑆 = ( ( 0 [,] 1 ) / ∼ ) | |
| 3 | vitali.3 | ⊢ ( 𝜑 → 𝐹 Fn 𝑆 ) | |
| 4 | vitali.4 | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) | |
| 5 | vitali.5 | ⊢ ( 𝜑 → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 6 | vitali.6 | ⊢ 𝑇 = ( 𝑛 ∈ ℕ ↦ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } ) | |
| 7 | vitali.7 | ⊢ ( 𝜑 → ¬ ran 𝐹 ∈ ( 𝒫 ℝ ∖ dom vol ) ) | |
| 8 | neeq1 | ⊢ ( [ 𝑣 ] ∼ = 𝑧 → ( [ 𝑣 ] ∼ ≠ ∅ ↔ 𝑧 ≠ ∅ ) ) | |
| 9 | 1 | vitalilem1 | ⊢ ∼ Er ( 0 [,] 1 ) |
| 10 | erdm | ⊢ ( ∼ Er ( 0 [,] 1 ) → dom ∼ = ( 0 [,] 1 ) ) | |
| 11 | 9 10 | ax-mp | ⊢ dom ∼ = ( 0 [,] 1 ) |
| 12 | 11 | eleq2i | ⊢ ( 𝑣 ∈ dom ∼ ↔ 𝑣 ∈ ( 0 [,] 1 ) ) |
| 13 | ecdmn0 | ⊢ ( 𝑣 ∈ dom ∼ ↔ [ 𝑣 ] ∼ ≠ ∅ ) | |
| 14 | 12 13 | bitr3i | ⊢ ( 𝑣 ∈ ( 0 [,] 1 ) ↔ [ 𝑣 ] ∼ ≠ ∅ ) |
| 15 | 14 | biimpi | ⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → [ 𝑣 ] ∼ ≠ ∅ ) |
| 16 | 2 8 15 | ectocl | ⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ≠ ∅ ) |
| 17 | 16 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ≠ ∅ ) |
| 18 | sseq1 | ⊢ ( [ 𝑤 ] ∼ = 𝑧 → ( [ 𝑤 ] ∼ ⊆ ( 0 [,] 1 ) ↔ 𝑧 ⊆ ( 0 [,] 1 ) ) ) | |
| 19 | 9 | a1i | ⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → ∼ Er ( 0 [,] 1 ) ) |
| 20 | 19 | ecss | ⊢ ( 𝑤 ∈ ( 0 [,] 1 ) → [ 𝑤 ] ∼ ⊆ ( 0 [,] 1 ) ) |
| 21 | 2 18 20 | ectocl | ⊢ ( 𝑧 ∈ 𝑆 → 𝑧 ⊆ ( 0 [,] 1 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → 𝑧 ⊆ ( 0 [,] 1 ) ) |
| 23 | 22 | sseld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 24 | 17 23 | embantd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝑆 ) → ( ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) → ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 25 | 24 | ralimdva | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) → ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) |
| 26 | 4 25 | mpd | ⊢ ( 𝜑 → ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) |
| 27 | ffnfv | ⊢ ( 𝐹 : 𝑆 ⟶ ( 0 [,] 1 ) ↔ ( 𝐹 Fn 𝑆 ∧ ∀ 𝑧 ∈ 𝑆 ( 𝐹 ‘ 𝑧 ) ∈ ( 0 [,] 1 ) ) ) | |
| 28 | 3 26 27 | sylanbrc | ⊢ ( 𝜑 → 𝐹 : 𝑆 ⟶ ( 0 [,] 1 ) ) |
| 29 | 28 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 30 | 5 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 31 | f1ocnv | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → ◡ 𝐺 : ( ℚ ∩ ( - 1 [,] 1 ) ) –1-1-onto→ ℕ ) | |
| 32 | f1of | ⊢ ( ◡ 𝐺 : ( ℚ ∩ ( - 1 [,] 1 ) ) –1-1-onto→ ℕ → ◡ 𝐺 : ( ℚ ∩ ( - 1 [,] 1 ) ) ⟶ ℕ ) | |
| 33 | 30 31 32 | 3syl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ◡ 𝐺 : ( ℚ ∩ ( - 1 [,] 1 ) ) ⟶ ℕ ) |
| 34 | simpr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ( 0 [,] 1 ) ) | |
| 35 | 34 14 | sylib | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ 𝑣 ] ∼ ≠ ∅ ) |
| 36 | neeq1 | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( 𝑧 ≠ ∅ ↔ [ 𝑣 ] ∼ ≠ ∅ ) ) | |
| 37 | fveq2 | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) | |
| 38 | id | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → 𝑧 = [ 𝑣 ] ∼ ) | |
| 39 | 37 38 | eleq12d | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ↔ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) ) |
| 40 | 36 39 | imbi12d | ⊢ ( 𝑧 = [ 𝑣 ] ∼ → ( ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ↔ ( [ 𝑣 ] ∼ ≠ ∅ → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) ) ) |
| 41 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ∀ 𝑧 ∈ 𝑆 ( 𝑧 ≠ ∅ → ( 𝐹 ‘ 𝑧 ) ∈ 𝑧 ) ) |
| 42 | ovex | ⊢ ( 0 [,] 1 ) ∈ V | |
| 43 | erex | ⊢ ( ∼ Er ( 0 [,] 1 ) → ( ( 0 [,] 1 ) ∈ V → ∼ ∈ V ) ) | |
| 44 | 9 42 43 | mp2 | ⊢ ∼ ∈ V |
| 45 | 44 | ecelqsi | ⊢ ( 𝑣 ∈ ( 0 [,] 1 ) → [ 𝑣 ] ∼ ∈ ( ( 0 [,] 1 ) / ∼ ) ) |
| 46 | 45 | adantl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ 𝑣 ] ∼ ∈ ( ( 0 [,] 1 ) / ∼ ) ) |
| 47 | 46 2 | eleqtrrdi | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → [ 𝑣 ] ∼ ∈ 𝑆 ) |
| 48 | 40 41 47 | rspcdva | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( [ 𝑣 ] ∼ ≠ ∅ → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) ) |
| 49 | 35 48 | mpd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ) |
| 50 | fvex | ⊢ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ V | |
| 51 | vex | ⊢ 𝑣 ∈ V | |
| 52 | 50 51 | elec | ⊢ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ↔ 𝑣 ∼ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 53 | oveq12 | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) → ( 𝑥 − 𝑦 ) = ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) | |
| 54 | 53 | eleq1d | ⊢ ( ( 𝑥 = 𝑣 ∧ 𝑦 = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) → ( ( 𝑥 − 𝑦 ) ∈ ℚ ↔ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) ) |
| 55 | 54 1 | brab2a | ⊢ ( 𝑣 ∼ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) ) |
| 56 | 52 55 | bitri | ⊢ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ [ 𝑣 ] ∼ ↔ ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) ) |
| 57 | 49 56 | sylib | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝑣 ∈ ( 0 [,] 1 ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) ) |
| 58 | 57 | simprd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℚ ) |
| 59 | elicc01 | ⊢ ( 𝑣 ∈ ( 0 [,] 1 ) ↔ ( 𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ∧ 𝑣 ≤ 1 ) ) | |
| 60 | 34 59 | sylib | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 ∈ ℝ ∧ 0 ≤ 𝑣 ∧ 𝑣 ≤ 1 ) ) |
| 61 | 60 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ℝ ) |
| 62 | 57 | simpld | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 ∈ ( 0 [,] 1 ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) ) |
| 63 | 62 | simprd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ) |
| 64 | elicc01 | ⊢ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ≤ 1 ) ) | |
| 65 | 63 64 | sylib | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ℝ ∧ 0 ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∧ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ≤ 1 ) ) |
| 66 | 65 | simp1d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ℝ ) |
| 67 | 61 66 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℝ ) |
| 68 | 66 61 | resubcld | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ∈ ℝ ) |
| 69 | 1red | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 1 ∈ ℝ ) | |
| 70 | 60 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 0 ≤ 𝑣 ) |
| 71 | 66 61 | subge02d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 0 ≤ 𝑣 ↔ ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 72 | 70 71 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 73 | 65 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ≤ 1 ) |
| 74 | 68 66 69 72 73 | letrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ≤ 1 ) |
| 75 | 68 69 | lenegd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ≤ 1 ↔ - 1 ≤ - ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ) ) |
| 76 | 74 75 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → - 1 ≤ - ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) ) |
| 77 | 66 | recnd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ℂ ) |
| 78 | 61 | recnd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ℂ ) |
| 79 | 77 78 | negsubdi2d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → - ( ( 𝐹 ‘ [ 𝑣 ] ∼ ) − 𝑣 ) = ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 80 | 76 79 | breqtrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → - 1 ≤ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 81 | 65 | simp2d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 0 ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 82 | 61 66 | subge02d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 0 ≤ ( 𝐹 ‘ [ 𝑣 ] ∼ ) ↔ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ≤ 𝑣 ) ) |
| 83 | 81 82 | mpbid | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ≤ 𝑣 ) |
| 84 | 60 | simp3d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ≤ 1 ) |
| 85 | 67 61 69 83 84 | letrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ≤ 1 ) |
| 86 | neg1rr | ⊢ - 1 ∈ ℝ | |
| 87 | 1re | ⊢ 1 ∈ ℝ | |
| 88 | 86 87 | elicc2i | ⊢ ( ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ( - 1 [,] 1 ) ↔ ( ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ℝ ∧ - 1 ≤ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ≤ 1 ) ) |
| 89 | 67 80 85 88 | syl3anbrc | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ( - 1 [,] 1 ) ) |
| 90 | 58 89 | elind | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 91 | 33 90 | ffvelcdmd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ∈ ℕ ) |
| 92 | oveq1 | ⊢ ( 𝑠 = 𝑣 → ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) = ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ) | |
| 93 | 92 | eleq1d | ⊢ ( 𝑠 = 𝑣 → ( ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 ↔ ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 ) ) |
| 94 | f1ocnvfv2 | ⊢ ( ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) ∧ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ∈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) = ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) | |
| 95 | 5 90 94 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) = ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) |
| 96 | 95 | oveq2d | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) = ( 𝑣 − ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) |
| 97 | 78 77 | nncand | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 98 | 96 97 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) = ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) |
| 99 | fnfvelrn | ⊢ ( ( 𝐹 Fn 𝑆 ∧ [ 𝑣 ] ∼ ∈ 𝑆 ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ran 𝐹 ) | |
| 100 | 3 47 99 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝐹 ‘ [ 𝑣 ] ∼ ) ∈ ran 𝐹 ) |
| 101 | 98 100 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑣 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 ) |
| 102 | 93 61 101 | elrabd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ) |
| 103 | fveq2 | ⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) | |
| 104 | 103 | oveq2d | ⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) = ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ) |
| 105 | 104 | eleq1d | ⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → ( ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 ↔ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 ) ) |
| 106 | 105 | rabbidv | ⊢ ( 𝑛 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ) |
| 107 | reex | ⊢ ℝ ∈ V | |
| 108 | 107 | rabex | ⊢ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ∈ V |
| 109 | 106 6 108 | fvmpt | ⊢ ( ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ∈ ℕ → ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ) |
| 110 | 91 109 | syl | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) ∈ ran 𝐹 } ) |
| 111 | 102 110 | eleqtrrd | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) |
| 112 | fveq2 | ⊢ ( 𝑚 = ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) → ( 𝑇 ‘ 𝑚 ) = ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) | |
| 113 | 112 | eliuni | ⊢ ( ( ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ∈ ℕ ∧ 𝑣 ∈ ( 𝑇 ‘ ( ◡ 𝐺 ‘ ( 𝑣 − ( 𝐹 ‘ [ 𝑣 ] ∼ ) ) ) ) ) → 𝑣 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 114 | 91 111 113 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑣 ∈ ( 0 [,] 1 ) ) → 𝑣 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 115 | 114 | ex | ⊢ ( 𝜑 → ( 𝑣 ∈ ( 0 [,] 1 ) → 𝑣 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) ) |
| 116 | 115 | ssrdv | ⊢ ( 𝜑 → ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ) |
| 117 | eliun | ⊢ ( 𝑥 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ↔ ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) | |
| 118 | fveq2 | ⊢ ( 𝑛 = 𝑚 → ( 𝐺 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑚 ) ) | |
| 119 | 118 | oveq2d | ⊢ ( 𝑛 = 𝑚 → ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) = ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ) |
| 120 | 119 | eleq1d | ⊢ ( 𝑛 = 𝑚 → ( ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 ↔ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 121 | 120 | rabbidv | ⊢ ( 𝑛 = 𝑚 → { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑛 ) ) ∈ ran 𝐹 } = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 122 | 107 | rabex | ⊢ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ∈ V |
| 123 | 121 6 122 | fvmpt | ⊢ ( 𝑚 ∈ ℕ → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 124 | 123 | adantl | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑇 ‘ 𝑚 ) = { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 125 | 124 | eleq2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ↔ 𝑥 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) ) |
| 126 | 125 | biimpa | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ) |
| 127 | oveq1 | ⊢ ( 𝑠 = 𝑥 → ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) = ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ) | |
| 128 | 127 | eleq1d | ⊢ ( 𝑠 = 𝑥 → ( ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ↔ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 129 | 128 | elrab | ⊢ ( 𝑥 ∈ { 𝑠 ∈ ℝ ∣ ( 𝑠 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 } ↔ ( 𝑥 ∈ ℝ ∧ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 130 | 126 129 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝑥 ∈ ℝ ∧ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) ) |
| 131 | 130 | simpld | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ∈ ℝ ) |
| 132 | 86 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → - 1 ∈ ℝ ) |
| 133 | iccssre | ⊢ ( ( - 1 ∈ ℝ ∧ 1 ∈ ℝ ) → ( - 1 [,] 1 ) ⊆ ℝ ) | |
| 134 | 86 87 133 | mp2an | ⊢ ( - 1 [,] 1 ) ⊆ ℝ |
| 135 | f1of | ⊢ ( 𝐺 : ℕ –1-1-onto→ ( ℚ ∩ ( - 1 [,] 1 ) ) → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) | |
| 136 | 5 135 | syl | ⊢ ( 𝜑 → 𝐺 : ℕ ⟶ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 137 | 136 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ( ℚ ∩ ( - 1 [,] 1 ) ) ) |
| 138 | 137 | elin2d | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ( - 1 [,] 1 ) ) |
| 139 | 134 138 | sselid | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) → ( 𝐺 ‘ 𝑚 ) ∈ ℝ ) |
| 140 | 139 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ℝ ) |
| 141 | 138 | adantr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) ∈ ( - 1 [,] 1 ) ) |
| 142 | 86 87 | elicc2i | ⊢ ( ( 𝐺 ‘ 𝑚 ) ∈ ( - 1 [,] 1 ) ↔ ( ( 𝐺 ‘ 𝑚 ) ∈ ℝ ∧ - 1 ≤ ( 𝐺 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑚 ) ≤ 1 ) ) |
| 143 | 141 142 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) ∈ ℝ ∧ - 1 ≤ ( 𝐺 ‘ 𝑚 ) ∧ ( 𝐺 ‘ 𝑚 ) ≤ 1 ) ) |
| 144 | 143 | simp2d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → - 1 ≤ ( 𝐺 ‘ 𝑚 ) ) |
| 145 | 29 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ran 𝐹 ⊆ ( 0 [,] 1 ) ) |
| 146 | 130 | simprd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ran 𝐹 ) |
| 147 | 145 146 | sseldd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ( 0 [,] 1 ) ) |
| 148 | elicc01 | ⊢ ( ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ( 0 [,] 1 ) ↔ ( ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∧ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ≤ 1 ) ) | |
| 149 | 147 148 | sylib | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ∧ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ≤ 1 ) ) |
| 150 | 149 | simp2d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 0 ≤ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ) |
| 151 | 131 140 | subge0d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 0 ≤ ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ↔ ( 𝐺 ‘ 𝑚 ) ≤ 𝑥 ) ) |
| 152 | 150 151 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) ≤ 𝑥 ) |
| 153 | 132 140 131 144 152 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → - 1 ≤ 𝑥 ) |
| 154 | peano2re | ⊢ ( ( 𝐺 ‘ 𝑚 ) ∈ ℝ → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ℝ ) | |
| 155 | 140 154 | syl | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ∈ ℝ ) |
| 156 | 2re | ⊢ 2 ∈ ℝ | |
| 157 | 156 | a1i | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 2 ∈ ℝ ) |
| 158 | 149 | simp3d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ≤ 1 ) |
| 159 | 1red | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 1 ∈ ℝ ) | |
| 160 | 131 140 159 | lesubadd2d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝑥 − ( 𝐺 ‘ 𝑚 ) ) ≤ 1 ↔ 𝑥 ≤ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ) ) |
| 161 | 158 160 | mpbid | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ≤ ( ( 𝐺 ‘ 𝑚 ) + 1 ) ) |
| 162 | 143 | simp3d | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( 𝐺 ‘ 𝑚 ) ≤ 1 ) |
| 163 | 140 159 159 162 | leadd1dd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ ( 1 + 1 ) ) |
| 164 | df-2 | ⊢ 2 = ( 1 + 1 ) | |
| 165 | 163 164 | breqtrrdi | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → ( ( 𝐺 ‘ 𝑚 ) + 1 ) ≤ 2 ) |
| 166 | 131 155 157 161 165 | letrd | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ≤ 2 ) |
| 167 | 86 156 | elicc2i | ⊢ ( 𝑥 ∈ ( - 1 [,] 2 ) ↔ ( 𝑥 ∈ ℝ ∧ - 1 ≤ 𝑥 ∧ 𝑥 ≤ 2 ) ) |
| 168 | 131 153 166 167 | syl3anbrc | ⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ ℕ ) ∧ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) ) → 𝑥 ∈ ( - 1 [,] 2 ) ) |
| 169 | 168 | rexlimdva2 | ⊢ ( 𝜑 → ( ∃ 𝑚 ∈ ℕ 𝑥 ∈ ( 𝑇 ‘ 𝑚 ) → 𝑥 ∈ ( - 1 [,] 2 ) ) ) |
| 170 | 117 169 | biimtrid | ⊢ ( 𝜑 → ( 𝑥 ∈ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) → 𝑥 ∈ ( - 1 [,] 2 ) ) ) |
| 171 | 170 | ssrdv | ⊢ ( 𝜑 → ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) |
| 172 | 29 116 171 | 3jca | ⊢ ( 𝜑 → ( ran 𝐹 ⊆ ( 0 [,] 1 ) ∧ ( 0 [,] 1 ) ⊆ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ∧ ∪ 𝑚 ∈ ℕ ( 𝑇 ‘ 𝑚 ) ⊆ ( - 1 [,] 2 ) ) ) |