This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the partial series sum of a constant function. (Contributed by NM, 8-Aug-2005) (Revised by Mario Carneiro, 16-Feb-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ser1const | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) = ( 𝑁 · 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 | ⊢ ( 𝑗 = 1 → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 1 ) ) | |
| 2 | oveq1 | ⊢ ( 𝑗 = 1 → ( 𝑗 · 𝐴 ) = ( 1 · 𝐴 ) ) | |
| 3 | 1 2 | eqeq12d | ⊢ ( 𝑗 = 1 → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ↔ ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( 1 · 𝐴 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑗 = 1 → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ) ↔ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( 1 · 𝐴 ) ) ) ) |
| 5 | fveq2 | ⊢ ( 𝑗 = 𝑘 → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) ) | |
| 6 | oveq1 | ⊢ ( 𝑗 = 𝑘 → ( 𝑗 · 𝐴 ) = ( 𝑘 · 𝐴 ) ) | |
| 7 | 5 6 | eqeq12d | ⊢ ( 𝑗 = 𝑘 → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ↔ ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) ) ) |
| 8 | 7 | imbi2d | ⊢ ( 𝑗 = 𝑘 → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ) ↔ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) ) ) ) |
| 9 | fveq2 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) ) | |
| 10 | oveq1 | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑗 · 𝐴 ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) | |
| 11 | 9 10 | eqeq12d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ↔ ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) |
| 12 | 11 | imbi2d | ⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ) ↔ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) |
| 13 | fveq2 | ⊢ ( 𝑗 = 𝑁 → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) ) | |
| 14 | oveq1 | ⊢ ( 𝑗 = 𝑁 → ( 𝑗 · 𝐴 ) = ( 𝑁 · 𝐴 ) ) | |
| 15 | 13 14 | eqeq12d | ⊢ ( 𝑗 = 𝑁 → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ↔ ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) = ( 𝑁 · 𝐴 ) ) ) |
| 16 | 15 | imbi2d | ⊢ ( 𝑗 = 𝑁 → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑗 ) = ( 𝑗 · 𝐴 ) ) ↔ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) = ( 𝑁 · 𝐴 ) ) ) ) |
| 17 | 1z | ⊢ 1 ∈ ℤ | |
| 18 | 1nn | ⊢ 1 ∈ ℕ | |
| 19 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ 1 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = 𝐴 ) | |
| 20 | 18 19 | mpan2 | ⊢ ( 𝐴 ∈ ℂ → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = 𝐴 ) |
| 21 | mullid | ⊢ ( 𝐴 ∈ ℂ → ( 1 · 𝐴 ) = 𝐴 ) | |
| 22 | 20 21 | eqtr4d | ⊢ ( 𝐴 ∈ ℂ → ( ( ℕ × { 𝐴 } ) ‘ 1 ) = ( 1 · 𝐴 ) ) |
| 23 | 17 22 | seq1i | ⊢ ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 1 ) = ( 1 · 𝐴 ) ) |
| 24 | oveq1 | ⊢ ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + 𝐴 ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) | |
| 25 | seqp1 | ⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) ) ) | |
| 26 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 27 | 25 26 | eleq2s | ⊢ ( 𝑘 ∈ ℕ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 28 | 27 | adantl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) ) ) |
| 29 | peano2nn | ⊢ ( 𝑘 ∈ ℕ → ( 𝑘 + 1 ) ∈ ℕ ) | |
| 30 | fvconst2g | ⊢ ( ( 𝐴 ∈ ℂ ∧ ( 𝑘 + 1 ) ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) = 𝐴 ) | |
| 31 | 29 30 | sylan2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) = 𝐴 ) |
| 32 | 31 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + ( ( ℕ × { 𝐴 } ) ‘ ( 𝑘 + 1 ) ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + 𝐴 ) ) |
| 33 | 28 32 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + 𝐴 ) ) |
| 34 | nncn | ⊢ ( 𝑘 ∈ ℕ → 𝑘 ∈ ℂ ) | |
| 35 | id | ⊢ ( 𝐴 ∈ ℂ → 𝐴 ∈ ℂ ) | |
| 36 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 37 | adddir | ⊢ ( ( 𝑘 ∈ ℂ ∧ 1 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) ) | |
| 38 | 36 37 | mp3an2 | ⊢ ( ( 𝑘 ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
| 39 | 34 35 38 | syl2anr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) ) |
| 40 | 21 | adantr | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( 1 · 𝐴 ) = 𝐴 ) |
| 41 | 40 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 · 𝐴 ) + ( 1 · 𝐴 ) ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
| 42 | 39 41 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( 𝑘 + 1 ) · 𝐴 ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) |
| 43 | 33 42 | eqeq12d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ↔ ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) + 𝐴 ) = ( ( 𝑘 · 𝐴 ) + 𝐴 ) ) ) |
| 44 | 24 43 | imbitrrid | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ ) → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) |
| 45 | 44 | expcom | ⊢ ( 𝑘 ∈ ℕ → ( 𝐴 ∈ ℂ → ( ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) |
| 46 | 45 | a2d | ⊢ ( 𝑘 ∈ ℕ → ( ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑘 ) = ( 𝑘 · 𝐴 ) ) → ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ ( 𝑘 + 1 ) ) = ( ( 𝑘 + 1 ) · 𝐴 ) ) ) ) |
| 47 | 4 8 12 16 23 46 | nnind | ⊢ ( 𝑁 ∈ ℕ → ( 𝐴 ∈ ℂ → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) = ( 𝑁 · 𝐴 ) ) ) |
| 48 | 47 | impcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ ) → ( seq 1 ( + , ( ℕ × { 𝐴 } ) ) ‘ 𝑁 ) = ( 𝑁 · 𝐴 ) ) |