This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A representative of a nonempty equivalence class belongs to the domain of the equivalence relation. (Contributed by NM, 15-Feb-1996) (Revised by Mario Carneiro, 9-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ecdmn0 | ⊢ ( 𝐴 ∈ dom 𝑅 ↔ [ 𝐴 ] 𝑅 ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elex | ⊢ ( 𝐴 ∈ dom 𝑅 → 𝐴 ∈ V ) | |
| 2 | n0 | ⊢ ( [ 𝐴 ] 𝑅 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ [ 𝐴 ] 𝑅 ) | |
| 3 | ecexr | ⊢ ( 𝑥 ∈ [ 𝐴 ] 𝑅 → 𝐴 ∈ V ) | |
| 4 | 3 | exlimiv | ⊢ ( ∃ 𝑥 𝑥 ∈ [ 𝐴 ] 𝑅 → 𝐴 ∈ V ) |
| 5 | 2 4 | sylbi | ⊢ ( [ 𝐴 ] 𝑅 ≠ ∅ → 𝐴 ∈ V ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | elecg | ⊢ ( ( 𝑥 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) | |
| 8 | 6 7 | mpan | ⊢ ( 𝐴 ∈ V → ( 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ 𝐴 𝑅 𝑥 ) ) |
| 9 | 8 | exbidv | ⊢ ( 𝐴 ∈ V → ( ∃ 𝑥 𝑥 ∈ [ 𝐴 ] 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) |
| 10 | 2 | a1i | ⊢ ( 𝐴 ∈ V → ( [ 𝐴 ] 𝑅 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ [ 𝐴 ] 𝑅 ) ) |
| 11 | eldmg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝑅 ↔ ∃ 𝑥 𝐴 𝑅 𝑥 ) ) | |
| 12 | 9 10 11 | 3bitr4rd | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ dom 𝑅 ↔ [ 𝐴 ] 𝑅 ≠ ∅ ) ) |
| 13 | 1 5 12 | pm5.21nii | ⊢ ( 𝐴 ∈ dom 𝑅 ↔ [ 𝐴 ] 𝑅 ≠ ∅ ) |