This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for vitali . (Contributed by Mario Carneiro, 16-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| vitali.2 | |- S = ( ( 0 [,] 1 ) /. .~ ) |
||
| vitali.3 | |- ( ph -> F Fn S ) |
||
| vitali.4 | |- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
||
| vitali.5 | |- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
||
| vitali.6 | |- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
||
| vitali.7 | |- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
||
| Assertion | vitalilem2 | |- ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vitali.1 | |- .~ = { <. x , y >. | ( ( x e. ( 0 [,] 1 ) /\ y e. ( 0 [,] 1 ) ) /\ ( x - y ) e. QQ ) } |
|
| 2 | vitali.2 | |- S = ( ( 0 [,] 1 ) /. .~ ) |
|
| 3 | vitali.3 | |- ( ph -> F Fn S ) |
|
| 4 | vitali.4 | |- ( ph -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
|
| 5 | vitali.5 | |- ( ph -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 6 | vitali.6 | |- T = ( n e. NN |-> { s e. RR | ( s - ( G ` n ) ) e. ran F } ) |
|
| 7 | vitali.7 | |- ( ph -> -. ran F e. ( ~P RR \ dom vol ) ) |
|
| 8 | neeq1 | |- ( [ v ] .~ = z -> ( [ v ] .~ =/= (/) <-> z =/= (/) ) ) |
|
| 9 | 1 | vitalilem1 | |- .~ Er ( 0 [,] 1 ) |
| 10 | erdm | |- ( .~ Er ( 0 [,] 1 ) -> dom .~ = ( 0 [,] 1 ) ) |
|
| 11 | 9 10 | ax-mp | |- dom .~ = ( 0 [,] 1 ) |
| 12 | 11 | eleq2i | |- ( v e. dom .~ <-> v e. ( 0 [,] 1 ) ) |
| 13 | ecdmn0 | |- ( v e. dom .~ <-> [ v ] .~ =/= (/) ) |
|
| 14 | 12 13 | bitr3i | |- ( v e. ( 0 [,] 1 ) <-> [ v ] .~ =/= (/) ) |
| 15 | 14 | biimpi | |- ( v e. ( 0 [,] 1 ) -> [ v ] .~ =/= (/) ) |
| 16 | 2 8 15 | ectocl | |- ( z e. S -> z =/= (/) ) |
| 17 | 16 | adantl | |- ( ( ph /\ z e. S ) -> z =/= (/) ) |
| 18 | sseq1 | |- ( [ w ] .~ = z -> ( [ w ] .~ C_ ( 0 [,] 1 ) <-> z C_ ( 0 [,] 1 ) ) ) |
|
| 19 | 9 | a1i | |- ( w e. ( 0 [,] 1 ) -> .~ Er ( 0 [,] 1 ) ) |
| 20 | 19 | ecss | |- ( w e. ( 0 [,] 1 ) -> [ w ] .~ C_ ( 0 [,] 1 ) ) |
| 21 | 2 18 20 | ectocl | |- ( z e. S -> z C_ ( 0 [,] 1 ) ) |
| 22 | 21 | adantl | |- ( ( ph /\ z e. S ) -> z C_ ( 0 [,] 1 ) ) |
| 23 | 22 | sseld | |- ( ( ph /\ z e. S ) -> ( ( F ` z ) e. z -> ( F ` z ) e. ( 0 [,] 1 ) ) ) |
| 24 | 17 23 | embantd | |- ( ( ph /\ z e. S ) -> ( ( z =/= (/) -> ( F ` z ) e. z ) -> ( F ` z ) e. ( 0 [,] 1 ) ) ) |
| 25 | 24 | ralimdva | |- ( ph -> ( A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) |
| 26 | 4 25 | mpd | |- ( ph -> A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) |
| 27 | ffnfv | |- ( F : S --> ( 0 [,] 1 ) <-> ( F Fn S /\ A. z e. S ( F ` z ) e. ( 0 [,] 1 ) ) ) |
|
| 28 | 3 26 27 | sylanbrc | |- ( ph -> F : S --> ( 0 [,] 1 ) ) |
| 29 | 28 | frnd | |- ( ph -> ran F C_ ( 0 [,] 1 ) ) |
| 30 | 5 | adantr | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 31 | f1ocnv | |- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> `' G : ( QQ i^i ( -u 1 [,] 1 ) ) -1-1-onto-> NN ) |
|
| 32 | f1of | |- ( `' G : ( QQ i^i ( -u 1 [,] 1 ) ) -1-1-onto-> NN -> `' G : ( QQ i^i ( -u 1 [,] 1 ) ) --> NN ) |
|
| 33 | 30 31 32 | 3syl | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> `' G : ( QQ i^i ( -u 1 [,] 1 ) ) --> NN ) |
| 34 | simpr | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. ( 0 [,] 1 ) ) |
|
| 35 | 34 14 | sylib | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ =/= (/) ) |
| 36 | neeq1 | |- ( z = [ v ] .~ -> ( z =/= (/) <-> [ v ] .~ =/= (/) ) ) |
|
| 37 | fveq2 | |- ( z = [ v ] .~ -> ( F ` z ) = ( F ` [ v ] .~ ) ) |
|
| 38 | id | |- ( z = [ v ] .~ -> z = [ v ] .~ ) |
|
| 39 | 37 38 | eleq12d | |- ( z = [ v ] .~ -> ( ( F ` z ) e. z <-> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) |
| 40 | 36 39 | imbi12d | |- ( z = [ v ] .~ -> ( ( z =/= (/) -> ( F ` z ) e. z ) <-> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) ) |
| 41 | 4 | adantr | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> A. z e. S ( z =/= (/) -> ( F ` z ) e. z ) ) |
| 42 | ovex | |- ( 0 [,] 1 ) e. _V |
|
| 43 | erex | |- ( .~ Er ( 0 [,] 1 ) -> ( ( 0 [,] 1 ) e. _V -> .~ e. _V ) ) |
|
| 44 | 9 42 43 | mp2 | |- .~ e. _V |
| 45 | 44 | ecelqsi | |- ( v e. ( 0 [,] 1 ) -> [ v ] .~ e. ( ( 0 [,] 1 ) /. .~ ) ) |
| 46 | 45 | adantl | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ e. ( ( 0 [,] 1 ) /. .~ ) ) |
| 47 | 46 2 | eleqtrrdi | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> [ v ] .~ e. S ) |
| 48 | 40 41 47 | rspcdva | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( [ v ] .~ =/= (/) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) ) |
| 49 | 35 48 | mpd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. [ v ] .~ ) |
| 50 | fvex | |- ( F ` [ v ] .~ ) e. _V |
|
| 51 | vex | |- v e. _V |
|
| 52 | 50 51 | elec | |- ( ( F ` [ v ] .~ ) e. [ v ] .~ <-> v .~ ( F ` [ v ] .~ ) ) |
| 53 | oveq12 | |- ( ( x = v /\ y = ( F ` [ v ] .~ ) ) -> ( x - y ) = ( v - ( F ` [ v ] .~ ) ) ) |
|
| 54 | 53 | eleq1d | |- ( ( x = v /\ y = ( F ` [ v ] .~ ) ) -> ( ( x - y ) e. QQ <-> ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) |
| 55 | 54 1 | brab2a | |- ( v .~ ( F ` [ v ] .~ ) <-> ( ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) |
| 56 | 52 55 | bitri | |- ( ( F ` [ v ] .~ ) e. [ v ] .~ <-> ( ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) |
| 57 | 49 56 | sylib | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. QQ ) ) |
| 58 | 57 | simprd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. QQ ) |
| 59 | elicc01 | |- ( v e. ( 0 [,] 1 ) <-> ( v e. RR /\ 0 <_ v /\ v <_ 1 ) ) |
|
| 60 | 34 59 | sylib | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v e. RR /\ 0 <_ v /\ v <_ 1 ) ) |
| 61 | 60 | simp1d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. RR ) |
| 62 | 57 | simpld | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v e. ( 0 [,] 1 ) /\ ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) ) |
| 63 | 62 | simprd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) ) |
| 64 | elicc01 | |- ( ( F ` [ v ] .~ ) e. ( 0 [,] 1 ) <-> ( ( F ` [ v ] .~ ) e. RR /\ 0 <_ ( F ` [ v ] .~ ) /\ ( F ` [ v ] .~ ) <_ 1 ) ) |
|
| 65 | 63 64 | sylib | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) e. RR /\ 0 <_ ( F ` [ v ] .~ ) /\ ( F ` [ v ] .~ ) <_ 1 ) ) |
| 66 | 65 | simp1d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. RR ) |
| 67 | 61 66 | resubcld | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. RR ) |
| 68 | 66 61 | resubcld | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) - v ) e. RR ) |
| 69 | 1red | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> 1 e. RR ) |
|
| 70 | 60 | simp2d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> 0 <_ v ) |
| 71 | 66 61 | subge02d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( 0 <_ v <-> ( ( F ` [ v ] .~ ) - v ) <_ ( F ` [ v ] .~ ) ) ) |
| 72 | 70 71 | mpbid | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) - v ) <_ ( F ` [ v ] .~ ) ) |
| 73 | 65 | simp3d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) <_ 1 ) |
| 74 | 68 66 69 72 73 | letrd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( F ` [ v ] .~ ) - v ) <_ 1 ) |
| 75 | 68 69 | lenegd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( ( ( F ` [ v ] .~ ) - v ) <_ 1 <-> -u 1 <_ -u ( ( F ` [ v ] .~ ) - v ) ) ) |
| 76 | 74 75 | mpbid | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> -u 1 <_ -u ( ( F ` [ v ] .~ ) - v ) ) |
| 77 | 66 | recnd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. CC ) |
| 78 | 61 | recnd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. CC ) |
| 79 | 77 78 | negsubdi2d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> -u ( ( F ` [ v ] .~ ) - v ) = ( v - ( F ` [ v ] .~ ) ) ) |
| 80 | 76 79 | breqtrd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> -u 1 <_ ( v - ( F ` [ v ] .~ ) ) ) |
| 81 | 65 | simp2d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> 0 <_ ( F ` [ v ] .~ ) ) |
| 82 | 61 66 | subge02d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( 0 <_ ( F ` [ v ] .~ ) <-> ( v - ( F ` [ v ] .~ ) ) <_ v ) ) |
| 83 | 81 82 | mpbid | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) <_ v ) |
| 84 | 60 | simp3d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v <_ 1 ) |
| 85 | 67 61 69 83 84 | letrd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) <_ 1 ) |
| 86 | neg1rr | |- -u 1 e. RR |
|
| 87 | 1re | |- 1 e. RR |
|
| 88 | 86 87 | elicc2i | |- ( ( v - ( F ` [ v ] .~ ) ) e. ( -u 1 [,] 1 ) <-> ( ( v - ( F ` [ v ] .~ ) ) e. RR /\ -u 1 <_ ( v - ( F ` [ v ] .~ ) ) /\ ( v - ( F ` [ v ] .~ ) ) <_ 1 ) ) |
| 89 | 67 80 85 88 | syl3anbrc | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. ( -u 1 [,] 1 ) ) |
| 90 | 58 89 | elind | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( F ` [ v ] .~ ) ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 91 | 33 90 | ffvelcdmd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) e. NN ) |
| 92 | oveq1 | |- ( s = v -> ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) = ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) ) |
|
| 93 | 92 | eleq1d | |- ( s = v -> ( ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F <-> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F ) ) |
| 94 | f1ocnvfv2 | |- ( ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) /\ ( v - ( F ` [ v ] .~ ) ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) -> ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = ( v - ( F ` [ v ] .~ ) ) ) |
|
| 95 | 5 90 94 | syl2an2r | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = ( v - ( F ` [ v ] .~ ) ) ) |
| 96 | 95 | oveq2d | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) = ( v - ( v - ( F ` [ v ] .~ ) ) ) ) |
| 97 | 78 77 | nncand | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( v - ( F ` [ v ] .~ ) ) ) = ( F ` [ v ] .~ ) ) |
| 98 | 96 97 | eqtrd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) = ( F ` [ v ] .~ ) ) |
| 99 | fnfvelrn | |- ( ( F Fn S /\ [ v ] .~ e. S ) -> ( F ` [ v ] .~ ) e. ran F ) |
|
| 100 | 3 47 99 | syl2an2r | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( F ` [ v ] .~ ) e. ran F ) |
| 101 | 98 100 | eqeltrd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( v - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F ) |
| 102 | 93 61 101 | elrabd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) |
| 103 | fveq2 | |- ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( G ` n ) = ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) |
|
| 104 | 103 | oveq2d | |- ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( s - ( G ` n ) ) = ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) ) |
| 105 | 104 | eleq1d | |- ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F ) ) |
| 106 | 105 | rabbidv | |- ( n = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) |
| 107 | reex | |- RR e. _V |
|
| 108 | 107 | rabex | |- { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } e. _V |
| 109 | 106 6 108 | fvmpt | |- ( ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) e. NN -> ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) |
| 110 | 91 109 | syl | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) = { s e. RR | ( s - ( G ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) e. ran F } ) |
| 111 | 102 110 | eleqtrrd | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) |
| 112 | fveq2 | |- ( m = ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) -> ( T ` m ) = ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) |
|
| 113 | 112 | eliuni | |- ( ( ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) e. NN /\ v e. ( T ` ( `' G ` ( v - ( F ` [ v ] .~ ) ) ) ) ) -> v e. U_ m e. NN ( T ` m ) ) |
| 114 | 91 111 113 | syl2anc | |- ( ( ph /\ v e. ( 0 [,] 1 ) ) -> v e. U_ m e. NN ( T ` m ) ) |
| 115 | 114 | ex | |- ( ph -> ( v e. ( 0 [,] 1 ) -> v e. U_ m e. NN ( T ` m ) ) ) |
| 116 | 115 | ssrdv | |- ( ph -> ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) ) |
| 117 | eliun | |- ( x e. U_ m e. NN ( T ` m ) <-> E. m e. NN x e. ( T ` m ) ) |
|
| 118 | fveq2 | |- ( n = m -> ( G ` n ) = ( G ` m ) ) |
|
| 119 | 118 | oveq2d | |- ( n = m -> ( s - ( G ` n ) ) = ( s - ( G ` m ) ) ) |
| 120 | 119 | eleq1d | |- ( n = m -> ( ( s - ( G ` n ) ) e. ran F <-> ( s - ( G ` m ) ) e. ran F ) ) |
| 121 | 120 | rabbidv | |- ( n = m -> { s e. RR | ( s - ( G ` n ) ) e. ran F } = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 122 | 107 | rabex | |- { s e. RR | ( s - ( G ` m ) ) e. ran F } e. _V |
| 123 | 121 6 122 | fvmpt | |- ( m e. NN -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 124 | 123 | adantl | |- ( ( ph /\ m e. NN ) -> ( T ` m ) = { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 125 | 124 | eleq2d | |- ( ( ph /\ m e. NN ) -> ( x e. ( T ` m ) <-> x e. { s e. RR | ( s - ( G ` m ) ) e. ran F } ) ) |
| 126 | 125 | biimpa | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x e. { s e. RR | ( s - ( G ` m ) ) e. ran F } ) |
| 127 | oveq1 | |- ( s = x -> ( s - ( G ` m ) ) = ( x - ( G ` m ) ) ) |
|
| 128 | 127 | eleq1d | |- ( s = x -> ( ( s - ( G ` m ) ) e. ran F <-> ( x - ( G ` m ) ) e. ran F ) ) |
| 129 | 128 | elrab | |- ( x e. { s e. RR | ( s - ( G ` m ) ) e. ran F } <-> ( x e. RR /\ ( x - ( G ` m ) ) e. ran F ) ) |
| 130 | 126 129 | sylib | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x e. RR /\ ( x - ( G ` m ) ) e. ran F ) ) |
| 131 | 130 | simpld | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x e. RR ) |
| 132 | 86 | a1i | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> -u 1 e. RR ) |
| 133 | iccssre | |- ( ( -u 1 e. RR /\ 1 e. RR ) -> ( -u 1 [,] 1 ) C_ RR ) |
|
| 134 | 86 87 133 | mp2an | |- ( -u 1 [,] 1 ) C_ RR |
| 135 | f1of | |- ( G : NN -1-1-onto-> ( QQ i^i ( -u 1 [,] 1 ) ) -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
|
| 136 | 5 135 | syl | |- ( ph -> G : NN --> ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 137 | 136 | ffvelcdmda | |- ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( QQ i^i ( -u 1 [,] 1 ) ) ) |
| 138 | 137 | elin2d | |- ( ( ph /\ m e. NN ) -> ( G ` m ) e. ( -u 1 [,] 1 ) ) |
| 139 | 134 138 | sselid | |- ( ( ph /\ m e. NN ) -> ( G ` m ) e. RR ) |
| 140 | 139 | adantr | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) e. RR ) |
| 141 | 138 | adantr | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) e. ( -u 1 [,] 1 ) ) |
| 142 | 86 87 | elicc2i | |- ( ( G ` m ) e. ( -u 1 [,] 1 ) <-> ( ( G ` m ) e. RR /\ -u 1 <_ ( G ` m ) /\ ( G ` m ) <_ 1 ) ) |
| 143 | 141 142 | sylib | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) e. RR /\ -u 1 <_ ( G ` m ) /\ ( G ` m ) <_ 1 ) ) |
| 144 | 143 | simp2d | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> -u 1 <_ ( G ` m ) ) |
| 145 | 29 | ad2antrr | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ran F C_ ( 0 [,] 1 ) ) |
| 146 | 130 | simprd | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x - ( G ` m ) ) e. ran F ) |
| 147 | 145 146 | sseldd | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x - ( G ` m ) ) e. ( 0 [,] 1 ) ) |
| 148 | elicc01 | |- ( ( x - ( G ` m ) ) e. ( 0 [,] 1 ) <-> ( ( x - ( G ` m ) ) e. RR /\ 0 <_ ( x - ( G ` m ) ) /\ ( x - ( G ` m ) ) <_ 1 ) ) |
|
| 149 | 147 148 | sylib | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( x - ( G ` m ) ) e. RR /\ 0 <_ ( x - ( G ` m ) ) /\ ( x - ( G ` m ) ) <_ 1 ) ) |
| 150 | 149 | simp2d | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> 0 <_ ( x - ( G ` m ) ) ) |
| 151 | 131 140 | subge0d | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( 0 <_ ( x - ( G ` m ) ) <-> ( G ` m ) <_ x ) ) |
| 152 | 150 151 | mpbid | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) <_ x ) |
| 153 | 132 140 131 144 152 | letrd | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> -u 1 <_ x ) |
| 154 | peano2re | |- ( ( G ` m ) e. RR -> ( ( G ` m ) + 1 ) e. RR ) |
|
| 155 | 140 154 | syl | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) + 1 ) e. RR ) |
| 156 | 2re | |- 2 e. RR |
|
| 157 | 156 | a1i | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> 2 e. RR ) |
| 158 | 149 | simp3d | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( x - ( G ` m ) ) <_ 1 ) |
| 159 | 1red | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> 1 e. RR ) |
|
| 160 | 131 140 159 | lesubadd2d | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( x - ( G ` m ) ) <_ 1 <-> x <_ ( ( G ` m ) + 1 ) ) ) |
| 161 | 158 160 | mpbid | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x <_ ( ( G ` m ) + 1 ) ) |
| 162 | 143 | simp3d | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( G ` m ) <_ 1 ) |
| 163 | 140 159 159 162 | leadd1dd | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) + 1 ) <_ ( 1 + 1 ) ) |
| 164 | df-2 | |- 2 = ( 1 + 1 ) |
|
| 165 | 163 164 | breqtrrdi | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> ( ( G ` m ) + 1 ) <_ 2 ) |
| 166 | 131 155 157 161 165 | letrd | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x <_ 2 ) |
| 167 | 86 156 | elicc2i | |- ( x e. ( -u 1 [,] 2 ) <-> ( x e. RR /\ -u 1 <_ x /\ x <_ 2 ) ) |
| 168 | 131 153 166 167 | syl3anbrc | |- ( ( ( ph /\ m e. NN ) /\ x e. ( T ` m ) ) -> x e. ( -u 1 [,] 2 ) ) |
| 169 | 168 | rexlimdva2 | |- ( ph -> ( E. m e. NN x e. ( T ` m ) -> x e. ( -u 1 [,] 2 ) ) ) |
| 170 | 117 169 | biimtrid | |- ( ph -> ( x e. U_ m e. NN ( T ` m ) -> x e. ( -u 1 [,] 2 ) ) ) |
| 171 | 170 | ssrdv | |- ( ph -> U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) |
| 172 | 29 116 171 | 3jca | |- ( ph -> ( ran F C_ ( 0 [,] 1 ) /\ ( 0 [,] 1 ) C_ U_ m e. NN ( T ` m ) /\ U_ m e. NN ( T ` m ) C_ ( -u 1 [,] 2 ) ) ) |